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A characteristic of robots that distinguishes them from other
intelligent agents like the chess playing Deep Blue [1] or any 2D
image classifier [2] is its physical embodiment in the real world.
A robot can act in or interact with the environment and thereby
change it. To do this in any meaningful way, it needs to be able
to perceive and represent the 3D structure of its surrounding. This
facilitates processes like motion planning of actuators or grasping
and manipulation.

Recently, through the release of devices like the kinect [3],
sensing of dense and high quality 3D data became cheap, fast and
easy. Certain constraints introduced by other 3D sensing devices
are removed. However, the basic challenges of processing and
understanding 3D data remain. These are (i) the high dimensionality
of the data, (ii) noise, (iii) occlusions and most importantly (iv) how
to get from the low-level set of 3D points to high-level semantic
information.

In the following, we will outline how we deal with these
challenges given the specific task of grasping and manipulation in
a table top scenario.

I. SEGMENTATION

For picking up objects from a table, segmenting them from the
table plane and each other facilitates grasp planning but also helps
processes like object recognition, categorization and pose estimation
that attach high-level semantic information to the low-level data. In
our previous work [4], we posed segmentation as an optimization
problem that maintains three hypotheses: figure, ground and a
supporting plane. The proposed approach is an iterative two-stage
method that first performs pixel-wise labeling using a set of model
parameters and then optimise’s these parameters in the second
stage until convergence. The model parameters are describing
distributions in hue, saturation and disparity space. The approach
is robust to noise and occlusions. Recently, this approach got
extended to maintain not just one but several foreground hypotheses.
Furthermore, we showed that this approach works well for 3D data
of very different quality coming from different sensing devices (see
Fig 1).

Compared to the popular plane removal approach [5], there are
several advantages. First, the segmentation is not purely geometrical
but uses multimodal information for optimizing the pixel labeling.
Therefore even object parts close to the table will be detected
as foreground. Second, the 2D ordering of the 3D data in the
pixel plane is used to efficiently represent the data and solve for
the neighborhood relationships. However, it needs some top-down
information for initializing the foreground hypotheses. We show
that this can either come from attention in which salient scene point
serve as initial foreground points or from user input.

This work was supported by the EU through the project GRASP,
IST-FP7-1P-215821, the Swedish Foundation for Strategic Research and
the Swedish Research Council. The authors are with the Centre for
Autonomous Systems and Computational Vision and Active Percep-
tion Lab, School of Computer Science, KTH in Stockholm, Sweden.
bohg, nbergst, celle,danik@csc.kth.se

g i WU

Fig. 1. Segmentation results given input data from different sensing devices.
From Left to Right: (i) KTH vision system [4]. (ii) PR2 narrow stereo-image
overlayed with co lour information transferred from wide-field. [6] (iii) PR2
Segmentation Result. (iv) Kinect input image mounted on the PR2. [3] (v)
Kinect Segmentation Result.

II. PREDICTION OF OCCLUDED OBJECT SHAPE

Given segmented object hypotheses from the segmentation de-
scribed above, the robot now might want to know whether it has
seen this or similar objects before and what their pose is. Due
to occlusions, even dense 3D data will only provide a partial
object reconstruction. Estimating the occluded and unknown part
of an object can support 3D object or classification approaches
but has also advantages for collision detection and grasp planning.
Psychological studies suggest that humans are able to predict the
portions of a scene that are not visible to them through controlled
scene continuation [7]. The expected structure of unobserved object
parts are governed i) visual evidence and ii) completion rules gained
through prior visual experience. A very strong prior that exists in
especially man-made objects is symmetry and has been shown to
be useful in robotics perception [8].

In our previous work [9], we show how we can use this prior
to successfully predict whole object shape and evaluate their plau-
sibility based on visibility constraints. Furthermore, we reconstruct
a mesh based on which grasps can be planned in simulation using
traditional grasp quality measures. However in our previous work,
we have not taken the plausibility rank of each point explicitly into
account. Here, we will show how this can be useful in a probabilistic
grasp planning framework like the one presented in [10].
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