A test bench to improve registration using RGB-D sensors

François Pomerleau and Stéphane Magnenat and Francis Colas and Ming Liu and Roland Siegwart

April 8, 2011 - European Robotics Forum, Västerås, Sweeden

- Current works on ICP/registration focus on limited datasets/specific conditions
- ▶ The best solution depends on the application
- ▶ Yet there is a lack of benchmark/comparative studies
- ► Solving this requires:
 - Common datasets
 - Versatile implementation

- Current works on ICP/registration focus on limited datasets/specific conditions
- ► The best solution depends on the application
- ▶ Yet there is a lack of benchmark/comparative studies
- ► Solving this requires:
 - Common datasets
 - Versatile implementation

- Current works on ICP/registration focus on limited datasets/specific conditions
- ► The best solution depends on the application
- ► Yet there is a lack of benchmark/comparative studies
- ► Solving this requires:
 - Common datasets
 - Versatile implementation

- Current works on ICP/registration focus on limited datasets/specific conditions
- ► The best solution depends on the application
- ► Yet there is a lack of benchmark/comparative studies
- Solving this requires:
 - ▶ Common datasets
 - Versatile implementation

Common datasets

Datasets with ground truth, using a RGB-D sensor

Dataset Acquisition Setup

- ▶ Vicon $100 \, \text{Hz}, < 1 \, \text{mm}$ precision
- Kinect hand-held, 30 Hz, 160×120 points
- ▶ Laptop Thinkpad W510, Intel Core i7 Q820

http://www.asl.ethz.ch/research/datasets access to FMA/Vicon through the courtesy of Prof. D'Andrea

Experiments

- translations on the three axes, for about 10 s per axis
- ▶ rotations on the three axes. for about 10 s per axis
- ► a free fly motion over the scene, for about 15 s

- slow motion, speed of indoor ground robots $(0.3 \,\mathrm{m/s})$
- medium motion, speed of agile robots $(0.5 \,\mathrm{m/s})$
- fast motion, a challenging speed $(1.3 \,\mathrm{m/s})$

Example of Acquisition: Free Fly

Video of free fly: slow, medium speed and fast

Versatile implementation

Open-source library providing a modular ICP chain

Tracker

Autonomous Systems Lab

Tracking Performances

Modular ICP chain

Typical ICP chain for Office Environments

Conclusion

Ongoing work toward standardisation of ICP comparison

- datasets with ground truth

Ongoing work toward standardisation of ICP comparison

- datasets with ground truth

Conclusion

Conclusion

Ongoing work toward standardisation of ICP comparison

- datasets with ground truth
- ▶ open-source library providing a modular ICP chain

Conclusion

Ongoing work toward standardisation of ICP comparison

- datasets with ground truth
- ▶ open-source library providing a modular ICP chain

Tracker as tech demo

Live Demo and Questions

Enjoy!

Your questions are welcome!

