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Mapping for Mobile Robots

We want Robots to Perceive, Understand and Manipulate the physical world.

An intelligent robot must answer:

What does the world look like? and Where am | located?
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Vehicle

Omni-directional camera

Stereo camera

GPS Receiver
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Creating a Map with Stereo Vision

FPS 10,0
TRACKING GOOD

[Sibley Mei Reid Newman RSS2009]
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Loop Closure Detection from Appearance Alone
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Why is Loop Closure Difficult ?

Scene Change
Place appearance changes between visits.

Real environment is highly dynamic
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Why is Loop Closure Difficult ?

Perceptual Aliasing
Different places can appear identical.

Looking same does not mean its the same place
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Place Recognition in Action: FAB-MAP

_Data ColleCiioniRlatform
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Problems: Missed Loop Closures

Only picks about 40% loop closures. '
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Problems: Wrong Loop Closures

Its not the same place! '
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FAB-MAP Image Representation

Bag-of-Words Representation

Word 753
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FAB-MAP Limitations

N oD N>
&0‘6 $0‘6$0‘6 &0‘6 &0‘6

- 7 {0,1,0,1,1,...}

Robot View Presence or absence of a feature

FAB-MAP only considers presence or absence of a feature.

Spatial information is lost
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Why is Spatial Information Important?

Set of Words = Same
Set of Words + Spatial Configuration = Different
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Location as a Constellation of Visual Features

Places are defined by their content AND their spatial configuration

Robot View Perceived 3D Scene Graph

Model Locations as a Non-planar Random Graph

3D distances from Lidar, Depth cameras, Stereo or Structure from motion
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Graph Structure is invariant under rigid
transformations

 Invariance

advantage

Clear



FABMAP 3D: Incorporating Spatial Information - what we will do:

A probabilistic model of locations as a
random graph.

Capture presence of features and their
spatial configuration.

Use a Detector model to explain the
noisy way in which the sensors perceive
the world.

Learn correlations between observed
features and complex multi-modal
distributions over distances.

Key Point: By explicitly modeling spatial appearance
we shall massively increase recall-precision coverage
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Random Graph Location Model

Observation

Vocabulary
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Word Detection
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Visual Model

Likelihood of word existence
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Random Graph Location Model

Observation Spatial Model

Distributions over inter-word distances
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Perceived Graph
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Random Graph Location Model

Observation Location Model: Spatial

X107 Inter-word distance probability

w »
[T

Probability

Perceived Graph

— o N C

o
o

o

4 6 8
Inter-word distance

o

Distributions over inter-word distances

= |\

Rohan Paul and Paul Newman




Random Graph Location Model

Observation

Perceived Graph

Location Model: Spatial

Inter-word distance probability
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A Generative Model for Locations

Visual Component Spatial Component

Word likelihood
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Range measurement model

Visual detector model
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Understanding re-observation

Original Observation Observation at Loop Closure

- Scene change can occur due to illumination and viewpoint changes or dynamic objects.
« Noisy perception by sensors.
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Understanding re-observation

Original Observation Observation at Loop Closure

Missing features
Distance measurement errors

False positives

« Scene change can occur due to illumination and viewpoint changes or dynamic objects.
« Noisy perception by sensors.
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Recognising a place for the second time....

Observation 2

How likely are these features ?

Given these features,

How likely is this configuration ?
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Location Model

Likelihood of word existence
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Learning Distributions over Feature Distances

Training Data

Word-pair Distances
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Probability

Observed distances between words
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Estimate likelihood over distances

Inter-word distance probability histogran
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Inter-word distance(m)
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Kernel Density Estimation

Observed Distances

Distances = {6.1,3.1,4.4,7.8,...}

Distribution over inter—-word distances
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Kernel Bandwidth Selection

Too small: over-fitting

Density estlmatlon with h = 0.08
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What kernel bandwidth to select ?
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Optimal Bandwidth Selection

An optimal bandwidth for KDE

Error metric
* Mean Integrated Square Error MISE(h) = E/(fh — f)?

2
- Asymptotic Mean Integrated Square Error AMISE(h) = n 'h™'R(K) + h*R( f”)( / :[:ZK/2>

1/5
. Optimal h minimizing AMISE [Jones et al. 1996]  Jupyirap = R(K) )2}
K

nR(f") ([ x?

Can bandwidth be estimated fast? Yes.

Linear in Training Points

« Inverse Fast Gaussian Transform (IFGT) [Yang et al. 2003] Very fast. Lose error bound.

«  Computational Geometry: Dual Tree algorithm [Gray et al. 2003] Variety of kernels. Tight error bound.
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Acquiring Spatial Knowledge

Visual features that appears on top of windows Visual feature observed in outdoor scenes

Inter—word distance probability histogram

Probability

10 15 20
Inter—word distance(m)

Multi-modal distribution learnt through kernel density estimation with optimal bandwidth selection
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Navigation

Observation Is this a new place? Is this a place in the map?

.

Gr = {Zy,D}

How likely is this location
given all places?

Observation Likelihood

|

p(Gr|Ln, G5 1)p(L,|GF1)
p(Gr|GF1)

p(Ln’gk)

Partition Function
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A Promising Factorisation....

What’s the probability that observation, Gy,
came from location, L.,

|

p(Ge|Ln,G*1) = p(Gk|Ln)

P({Zk, Dr}|Ln)

P(Dy|Zi, Ly)p(Zy,|Ly)

N

How likely are the graph distances, D, How likely are these features, 7,
given these features and location, L, at this location, L,,

Spatial component Visual component (this is
Vanilla FABMAP!)
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Evaluating Visual Likelihood

Visual Appearance

P(Zk|Ln)

Visual Words are Not Independent.

Presence of some words is correlated as they
are generated from the same underlying objects.

Learn correlations via mutual information
between features from training data.

[Cummins and Newman IJRR08]

Rohan Paul and Paul Newman



Evaluating Spatial Likelihood

Spatial appearance term conditioned on visual appearance

p(Dk’Zk, H H Zp |h2j — r)?(hzj - br|Ln)J

1n=1r=1
0= histogram

Detrange

— AN

Likelihood of observing 0.54m What is our prior belief over
distances?

. . given a noisy sensor

Range measurement model Inter-word distance probability histogran

Ny »

Probability

' True val 10 13 20
Inter-word distance(m)

- T™

Account for all possible bins, across all measured range occurrences, over all observed pairs and
incorporate a range sensor model
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How many graph edges to keep?

If N, features are detected in scene how many pairwise distances should be checked ?

Features observed in a scene Complete Graph
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Checking all pairwise distances causes O(N7) histogram updates - not pleasant '
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Which graph edges to keep?

Insight: Features usually originate from objects possessing high local spatial correlation.

Consider distances to neighboring points.
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Local Spatial Correlations are Common

Insight: Preserve local spatial correlations by choosing only neighboring points.
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Delaunay Tessellation

Delaunay Tessellation is a triangulation such that no point is inside the circumcircle of any triangle.

Graph with Delaunay Tessellation

Complete Graph
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Complete Graph After Delaunay Tessellation

After tessellation O(N;) pairwise histograms are updated.

Tessellation algorithm has O(NlogN¢) complexity.
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Evaluation - New College Data Set (Smith [JRR09)
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Combining Vision and Laser
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Obtaining 3D Coordinates for Visual Features

Laser points projected into the

Laser point cloud
camera frame

Obtaining 3D coordinates for visual words by projecting laser points into
camera frame after cross-calibration.
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Results: Example Picking up Missed Loop Closures

Perceived Graph

Perceived Scene Graph

Distinctive spatial similarity in graphs used by FAB-MAP 3D to infer a loop closure.
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Results: Example Picking up Missed Loop Closures
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Precision-Recall Curves - The Central Result

AAAAAAAALAA

Precision

et

[ —<—FAB-MAP
—=— FAB-MAP 3D with Delaunay Tessellation
| —=— FAB-MAP 3D with Complete Graph Evaluation

0.1 02 03 04 05 06 07 08 09
Recall

Algorithm Recall at 100% Order (in Scene Complexity) [ Order in Num Scenes
Precision

FAB-MAP 42% Linear Linear
FAB-MAP 3D with Complete Graph Evaluation |74% Quadratic Linear

FAB-MAP 3D with Delaunay Tessellation 71% Log-Linear Linear

Rohan Paul and Paul Newman



Implementation Related Issues

Computational Overhead of FAB-MAP 3D
Online: avg. 314ms inference time/place
Offline: 4.5 hrs for one off density estimation

«  MATLAB implementation, 2.66GHz Intel Core 2 Duo machine.

Speed-up with Delaunay Tessellation Histogram: Number of Features per Scene
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Complete Graph Evaluation
Delaunay Tessellation
Indicates average values
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Number of features detected

50 100 150 200 250
Number of features detected

Mean 116, Median 112, Std. dev. 48
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Limitations

PRTATE

Incomplete laser coverage Shadows Dynamic Objects
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Conclusions - What have we done?

Made use of easy to obtain local
metric information (SFM, Stereo,
Laser).

We learn at run time a probabilistic
generative place model which
captures visual appearance
(feature existence) and relative
geometry.

Precision

/-”

[ —— FAB-MAP

ThIS makeS a marked dlfference to | —=— FAB-MAP 3Dw?th Delaunay Tessellation '
precision recall - greatly increased = e
reca” at 1000/0 preCiSion 0 0.1 0.2 0.3 O.4Rec§)e.15II 0.6 0.7 0.8 0.9

Algorithm is linear in number of
places

FABMAP-3D fully exploits scene structure and constitutes a new way to undertake robotic
mapping with vision and laser.
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Thank You

Rohan Paul and Paul Newman
Mobile Robotics Group

University of Oxford
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