FAB-MAP 3D:
 Topological Mapping with Spatial and Visual Appearance - "RGBD"

Rohan Paul and Paul Newman

Mobile Robotics Group
University of Oxford

Mapping for Mobile Robots

We want Robots to Perceive, Understand and Manipulate the physical world.

An intelligent robot must answer:
What does the world look like? and Where am I located?

Vehicle

Omni-directional camera

Stereo camera

GPS Receiver

Creating a Map with Stereo Vision

[Sibley Mei Reid Newman RSS2009]
[Sibley Mei Reid Newman RSS2009]

Loop Closure Detection from Appearance Alone

Why is Loop Closure Difficult?

Scene Change

Place appearance changes between visits.

Real environment is highly dynamic

Why is Loop Closure Difficult?

Perceptual Aliasing

Different places can appear identical.

Looking same does not mean its the same place

Place Recognition in Action: FAB-MAP

Problems: Missed Loop Closures

Only picks about 40\% loop closures.

Problems: Wrong Loop Closures

Its not the same place!

FAB-MAP Image Representation

Bag-of-Words Representation

Detect Regions

Word 753

$$
\begin{gathered}
\text { The Oxford } \\
\text { English } \\
\text { Dictionary } \\
\hline \begin{array}{c}
\text { stcowv birmon } \\
\text { Tho-Underdided }
\end{array} \\
\hline
\end{gathered}
$$

Robot View
Presence or absence of a feature

FAB-MAP only considers presence or absence of a feature. Spatial information is lost

Why is Spatial Information Important?

Set of Words = Same

Set of Words + Spatial Configuration = Different

Location as a Constellation of Visual Features

Places are defined by their content AND their spatial configuration

Robot View

Perceived Scene Graph

Perceived 3D Scene Graph

Model Locations as a Non-planar Random Graph
3D distances from Lidar, Depth cameras, Stereo or Structure from motion

Clear advantage : Invariance

Graph Structure is invariant under rigid transformations

- A probabilistic model of locations as a random graph.
- Capture presence of features and their spatial configuration.
- Use a Detector model to explain the noisy way in which the sensors perceive the world.
- Learn correlations between observed features and complex multi-modal distributions over distances.

Key Point: By explicitly modeling spatial appearance we shall massively increase recall-precision coverage

Random Graph Location Model

Observation

Vocabulary

Perceived Graph

Word Detection

Visual Model

Likelihood of word existence

$$
p=1.0 \quad p=1.0 \quad p=1.0 \quad p=0.3
$$

Random Graph Location Model

Observation

Perceived Graph

Distributions over inter-word distances

Random Graph Location Model

Observation

Perceived Graph

Location Model: Spatial

Distributions over inter-word distances

Random Graph Location Model

Observation

Perceived Graph

Location Model: Spatial

Distributions over inter-word distances

A Generative Model for Locations

Visual Component

Spatial Component

Distributions over distances

Understanding re-observation

Original Observation

- Scene change can occur due to illumination and viewpoint changes or dynamic objects.
- Noisy perception by sensors.

Understanding re-observation

Original Observation

Observation at Loop Closure

- Scene change can occur due to illumination and viewpoint changes or dynamic objects.
- Noisy perception by sensors.

Recognising a place for the second time....

Observation 2

Likelihood of word existence

Distributions over inter-word distances

Learning Distributions over Feature Distances

Training Data

Word-pair Distances

Kernel Density Estimation

Observed Distances

$$
\text { Distances }=\{6.1,3.1,4.4,7.8, \ldots\}
$$

Non-parametric Kernel Density Estimation

$$
\hat{p}(x)=\frac{1}{N \sqrt{2 \pi} h} \sum_{i=1}^{N} \exp -\left(\frac{\left(x-x_{i}\right)^{2}}{2 h^{2}}\right)
$$

Kernel Bandwidth Selection

What kernel bandwidth to select?

$\mathrm{h}=$?

Too small: over-fitting

$h=0.08$

Optimal

$\mathrm{h}=0.4$

Too large: under-fitting

$h=1.5$

Optimal Bandwidth Selection

An optimal bandwidth for KDE

Error metric

- Mean Integrated Square Error

$$
\operatorname{MISE}(h)=E \int\left(\hat{f}_{h}-f\right)^{2}
$$

- Asymptotic Mean Integrated Square Error

$$
\operatorname{AMISE}(h)=n^{-1} h^{-1} R(K)+h^{4} R\left(f^{\prime \prime}\right)\left(\int x^{2} K / 2\right)^{2}
$$

- Optimal h minimizing AMISE [Jones et al. 1996]

$$
h_{\mathrm{AMISE}}=\left[\frac{R(K)}{n R\left(f^{\prime \prime}\right)\left(\int x^{2} K\right)^{2}}\right]^{1 / 5}
$$

Can bandwidth be estimated fast? Yes.

Linear in Training Points

- Inverse Fast Gaussian Transform (IFGT) [Yang et al. 2003]
- Computational Geometry: Dual Tree algorithm [Gray et al. 2003]

Very fast. Lose error bound.
Variety of kernels. Tight error bound.

Acquiring Spatial Knowledge

Visual features that appears on top of windows

Visual feature observed in outdoor scenes

Multi-modal distribution learnt through kernel density estimation with optimal bandwidth selection

Navigation

Observation

$G_{k}=\left\{Z_{k}, D_{k}\right\}$

Is this a new place?

Is this a place in the map?

How likely is this location given all places?
\downarrow

$$
p\left(L_{n} \mid \mathcal{G}^{k}\right)=\frac{p\left(G_{k} \mid L_{n}, \mathcal{G}^{k-1}\right) p\left(L_{n} \mid \mathcal{G}^{k-1}\right)}{p\left(G_{k} \mid \mathcal{G}^{k-1}\right)}
$$

A Promising Factorisation....

What's the probability that observation, G_{k} came from location, L_{n}

$$
\begin{aligned}
p\left(G_{k} \mid L_{n}, \mathcal{G}^{k-1}\right) & =p\left(G_{k} \mid L_{n}\right) \\
& =p\left(\left\{Z_{k}, D_{k}\right\} \mid L_{n}\right) \\
& =p\left(D_{k} \mid Z_{k,} L_{n}\right) p\left(Z_{k}, \mid L_{n}\right)
\end{aligned}
$$

How likely are the graph distances, D_{k} given these features and location, L_{n}

How likely are these features, Z_{k} at this location, L_{n}

Visual component (this is Vanilla FABMAP!)

Visual Appearance

$$
p\left(Z_{k} \mid L_{n}\right)
$$

- Visual Words are Not Independent.
- Presence of some words is correlated as they are generated from the same underlying objects.
- Learn correlations via mutual information between features from training data.

Evaluating Spatial Likelihood

Spatial appearance term conditioned on visual appearance

$$
\begin{aligned}
p\left(D_{k} \mid Z_{k,} L_{n}\right)= & \prod_{i, j=1}^{|v|} \prod_{n=1}^{C_{i j}} \sum_{r=1}^{R} \underbrace{p\left(d_{i j}^{n} \mid h_{i j}=b_{r}\right)}_{\text {Det range }^{p}} \underbrace{p\left(h_{i j}=b_{r} \mid L_{n}\right)}_{\text {histogram }} \\
& \begin{array}{c}
\begin{array}{c}
\text { Likelihood of observing } 0.54 \mathrm{~m} \\
\text { given a noisy sensor }
\end{array}
\end{array} \quad \begin{array}{c}
\text { What is our prior belief over } \\
\text { distances? }
\end{array}
\end{aligned}
$$

Range measurement model

Inter-word distance(m)

Account for all possible bins, across all measured range occurrences, over all observed pairs and incorporate a range sensor model

How many graph edges to keep?

If N_{f} features are detected in scene how many pairwise distances should be checked?

Checking all pairwise distances causes $O\left(N_{f}^{2}\right)$ histogram updates - not pleasant

Which graph edges to keep?

Insight: Features usually originate from objects possessing high local spatial correlation.
Consider distances to neighboring points.

Local Spatial Correlations are Common

Insight: Preserve local spatial correlations by choosing only neighboring points.

Delaunay Tessellation

Delaunay Tessellation is a triangulation such that no point is inside the circumcircle of any triangle.

After tessellation $O\left(N_{f}\right)$ pairwise histograms are updated.
Tessellation algorithm has $O\left(N_{f} \log N_{f}\right)$ complexity.

Evaluation - New College Data Set (Smith IJRR09)

Obtaining 3D Coordinates for Visual Features

Laser points projected into the camera frame

Laser point cloud

Obtaining 3D coordinates for visual words by projecting laser points into camera frame after cross-calibration.

Results: Example Picking up Missed Loop Closures

Distinctive spatial similarity in graphs used by FAB-MAP 3D to infer a loop closure.

Results: Example Picking up Missed Loop Closures

Loop closures declared by FABMAP 3D using spatial similarity, missed by FABMAP

Precision-Recall Curves - The Central Result

Algorithm	Recall at 100\% Precision	Order (in Scene Complexity)	Order in Num Scenes
FAB-MAP	42%	Linear	Linear
FAB-MAP 3D with Complete Graph Evaluation	74%	Quadratic	Linear
FAB-MAP 3D with Delaunay Tessellation	71%	Log-Linear	Linear

Implementation Related Issues

Computational Overhead of FAB-MAP 3D

- Online: avg. 314ms inference time/place
- Offline: 4.5 hrs for one off density estimation
- MATLAB implementation, 2.66 GHz Intel Core 2 Duo machine.

Speed-up with Delaunay Tessellation

Histogram: Number of Features per Scene

Mean 116, Median 112, Std. dev. 48

Limitations

Incomplete laser coverage

Shadows

Dynamic Objects

- Made use of easy to obtain local metric information (SFM, Stereo, Laser).
- We learn at run time a probabilistic generative place model which captures visual appearance (feature existence) and relative geometry.
- This makes a marked difference to precision recall - greatly increased recall at 100\% precision
- Algorithm is linear in number of places

FABMAP-3D fully exploits scene structure and constitutes a new way to undertake robotic mapping with vision and laser.

Thank You

Rohan Paul and Paul Newman
Mobile Robotics Group
University of Oxford

