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Mapping for Mobile Robots

We want Robots to Perceive, Understand and Manipulate the physical world.

An intelligent robot must answer:

What does the world look like?  and Where am I located?
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Vehicle

Omni-directional camera

Stereo camera

GPS Receiver
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Creating a Map with Stereo Vision

[Sibley Mei Reid Newman RSS2009]
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Loop Closure Detection from Appearance Alone

Closing the loop
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Why is Loop Closure Difficult ?

Scene Change

Place appearance changes between visits.

Real environment is highly dynamic
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Why is Loop Closure Difficult ?

Perceptual Aliasing

Different places can appear identical.

Looking same does not mean its the same place
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Place Recognition in Action: FAB-MAP
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Problems: Missed Loop Closures

Only picks about 40% loop closures.
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Its not the same place!

Problems: Wrong Loop Closures



Rohan Paul and Paul Newman

FAB-MAP Image Representation

Bag-of-Words Representation

Descriptor

Detect Regions

Compute 
Descriptor

Word 753
Quantize
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FAB-MAP Limitations

FAB-MAP only considers presence or absence of a feature.

Spatial information is lost

Robot View

Z = {0, 1, 0, 1, 1, ...}
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Why is Spatial Information Important?

Set of Words =  Same

Set of Words + Spatial Configuration = Different
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Location as a Constellation of Visual Features

Places are defined by their content AND their spatial configuration

Robot View Perceived 3D Scene Graph

Model Locations as a Non-planar Random Graph

3D distances from Lidar, Depth cameras, Stereo or Structure from motion
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Clear advantage : Invariance

Graph Structure is invariant under rigid 
transformations
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FABMAP 3D: Incorporating Spatial Information - what we will do: 

• A probabilistic model of locations as a 

random graph.

• Capture presence of features and their 

spatial configuration.

• Use a Detector model to explain the 

noisy way in which the sensors perceive 

the world.

• Learn correlations between observed 

features and complex multi-modal 

distributions over distances. 

Key Point: By explicitly modeling spatial appearance 

we shall massively increase recall-precision coverage
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Random Graph Location Model

Perceived Graph

Vocabulary

Observation

Likelihood of word existence

p = 1.0 p = 1.0 p = 1.0 p = 0.3

Visual Model

1

Word Detection

1 01
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Random Graph Location Model

Perceived Graph

Observation Spatial Model

Distributions over inter-word distances
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Random Graph Location Model

Observation Location Model: Spatial

Perceived Graph

Distributions over inter-word distances
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Random Graph Location Model

Observation Location Model: Spatial

Perceived Graph

Distributions over inter-word distances
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A Generative Model for Locations

Visual Component

L

ei eje1 e|v|

p = 1.0 p = 1.0 p = 1.0 p = 0.3

Word likelihood

Spatial Component

L

ei ej

hij

1 ≤ i, j ≤ |v|

Distributions over distances

zi zj z|v|z1 1 1 1 0

Word Detection

dn
ij

zi zj

1 ≤ i, j ≤ |v|
1 ≤ n ≤ cij 2.5m

1.5m

Distances detected

Visual detector model

False positive/negative rate

Range measurement model
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Understanding re-observation

Original Observation Observation at Loop Closure

• Scene change can occur due to illumination and viewpoint changes or dynamic objects.

• Noisy perception by sensors.
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Understanding re-observation

Original Observation Observation at Loop Closure

8.5 cm

4.1 cm

Distance measurement errors

5.2 cm

9.1 cm

Missing features

False positives

• Scene change can occur due to illumination and viewpoint changes or dynamic objects.

• Noisy perception by sensors.
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Recognising a place for the second time....

Likelihood of word existence

p = 1.0 p = 1.0 p = 1.0 p = 0.3

How likely are these features ?

Given these features, 

How likely is this configuration ?

9.1 cm

5.2 cm

Distributions over inter-word distances
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Learning Distributions over Feature Distances

z1

z2

z3

…

…

Word-pair Distances

z1 z2 z3
{2.1, 2.3, 6.5, ...}

Observed distances between words

Estimate likelihood over distances

Training Data
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Kernel Density Estimation

Non-parametric Kernel Density Estimation

Figure 3.5: Effect of kernel bandwidth selection: The figure shows KDE (blue curve) for a data set generated
from a bi-modal distribution (shown in green). The kernel bandwidth, h is shown alongside each graph.
Kernel width too small leads to overfitting (top graph) leading to a very noisy estimate. On the other
hand, h too large (bottom graph) leads to over-smoothening leading to an incorrect unimodal estimate. An
intermediate value leads to the best estimate (middle graph). Figure from [5].

p̂(x) =
1

N
√

2πh

N∑

i=1

exp−(
(x− xi)2

2h2
) (3.5)

The kernel function is characterized by a bandwidth (h) that determines the accuracy of the model.

Kernels too narrow lead to overfitting and very wide bandwidths lead to underfitting [31]. A number of

techniques have been proposed for data-driven bandwidth selection. These methods minimise the asymptotic

integrated mean integrated square error (AMISE) between the estimate, p̂(x) and the actual density, p(x).

The most successful methods rely on estimation of density derivative functionals through the solve-the-

equation plug-in method [58]. We used an implementation of an efficient ε− exact approximation algorithm

for optimal bandwidth estimation based on the improved fast gaussian transform (IFGT) [76]. The algorithm

has computational complexity linear in the number of training points. Once optimal bandwidth is estimated,

Equation 3.5 is used for calculating probabilities in each bin.

Sometimes due to limited training data, there are very few range samples for rare word pairs. Such

sampling error can cause probability estimates in some histogram bins can take degenerate values of 0 or 1.

To mitigate this effect, maximum likelihood probability estimates must be smoothed and then renormalized.

A variety of smoothing techniques exist [19], typically of the form

psmooth = (
N

N + K
)pmle + (

K

N + K
)pprior (3.6)

We assume uniform prior, i.e., pprior = 1
Lmax

and set K =
√

N , where N is the number of training

samples. In case no training samples are seen, each bin is assigned a flat prior.

There is scope for further improvements in inter-word density modeling. As distances are non-negative

scalar quantities, kernels with positive support like gamma kernels can be used for density estimation, where

mixture parameters can learnt through expectation maximization [10]. It is noteworthy that the approach

employed in this work lies in frequentist statistics domain. There is recent work emerging in the field of non-

26
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Kernel Bandwidth Selection

What kernel bandwidth to select ?
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Optimal Bandwidth Selection

Linear in Training Points

• Inverse Fast Gaussian Transform (IFGT) [Yang et al. 2003]

• Computational Geometry: Dual Tree algorithm [Gray et al. 2003]

Can bandwidth be estimated fast? Yes.

Very fast. Lose error bound.

Variety of kernels. Tight error bound.

An optimal bandwidth for KDE

Error metric

• Mean Integrated Square Error

• Asymptotic Mean Integrated Square Error

• Optimal h minimizing AMISE [Jones et al. 1996]
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Acquiring Spatial Knowledge

Visual features that appears on top of windows Visual feature observed in outdoor scenes

Multi-modal distribution learnt through kernel density estimation with optimal bandwidth selection
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Navigation

parametric Bayesian methods that have been successfully applied for clustering, density modeling and topic

discovery in large text/image corpora ([7], [69]). Further, density estimation can be done in an incremental

fashion where new data is incorporated in the model as it becomes available. In[27], authors present an

efficient recursive density approximation that relies on propogation of density modes. A probability density

is represented as a weighted sum of gaussians, whose number, weights, means and covariances are updated

incrementally with new data. Starting from the previous modes of the density, a variable-bandwidth mean

shift is employed to detect the new modes. This incremental approach has been applied to image processing

tasks like background modeling [27] and object tracking [28].

3.3 Probabilistic Navigation and Mapping

3.3.1 Estimating Location

At time k, the workspace is modeled as a collection of nk discrete and disjoint locations Lk = {L1, . . . , Lnk}.

Given a random graph model for each location, we compute the probability that the observed graph was

generated by each location, Ln. Calculating p(Ln|Gk) can be posed as a recursive Bayes estimation problem:

p(Ln|Gk) =
p(Gk|Ln,Gk−1)p(Ln|Gk−1)

p(Gk|Gk−1)
(3.7)

≈ p(Gk|Ln)p(Ln|Gk−1)
p(Gk|Gk−1)

where p(Ln|Gk−1) is the prior estimate of the robot’s location, p(Gk|Ln,Gk−1) represents the observation

likelihood, and p(Gk|Gk−1) is the normalization constant. Observations are assumed to be conditionally in-

dependent given location. Thus, p(Gk|Ln,Gk−1) is approximated as p(Gk|Ln). Likelihood that the observed

graph was generated by location, Ln is factored as two terms: (i) p(Zk|Ln), likelihood of the visual appear-

ance given location and (ii) p(Dk|Zk,Ln), likelihood of the observed spatial distances conditioned on visual

observations and location.

p(Gk|Ln,Gk−1) = p(Gk|Ln)

= p({Zk,Dk}|Ln) (3.8)

= p(Dk|Zk,Ln)p(Zk,|Ln)

The visual appearance likelihood term is expanded using the Chow-Liu approximation [11]. This expansion

approximates the discrete joint distribution p(z1, z2, . . . , z|v|) by the closest tree-structured Bayesian network

according to the Kullback-Leiber (KL) divergence criteria.

27

How likely is this location  

given all places?
Observation Likelihood

Prior

Partition Function

Observation

New

Place

Is this a new place? Is this a place in the map?
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A Promising Factorisation....

What!s the probability that observation,   

came from location, Ln

Gk

How likely are the graph distances,             

given these features and location, 
Dk
Ln

Spatial component

How likely are these features,        

at this location, 

Zk
Ln

Visual component (this is 
Vanilla FABMAP!)

parametric Bayesian methods that have been successfully applied for clustering, density modeling and topic

discovery in large text/image corpora ([7], [69]). Further, density estimation can be done in an incremental

fashion where new data is incorporated in the model as it becomes available. In[27], authors present an

efficient recursive density approximation that relies on propogation of density modes. A probability density

is represented as a weighted sum of gaussians, whose number, weights, means and covariances are updated

incrementally with new data. Starting from the previous modes of the density, a variable-bandwidth mean

shift is employed to detect the new modes. This incremental approach has been applied to image processing

tasks like background modeling [27] and object tracking [28].

3.3 Probabilistic Navigation and Mapping

3.3.1 Estimating Location

At time k, the workspace is modeled as a collection of nk discrete and disjoint locations Lk = {L1, . . . , Lnk}.

Given a random graph model for each location, we compute the probability that the observed graph was

generated by each location, Ln. Calculating p(Ln|Gk) can be posed as a recursive Bayes estimation problem:

p(Ln|Gk) =
p(Gk|Ln,Gk−1)p(Ln|Gk−1)

p(Gk|Gk−1)
(3.7)

≈ p(Gk|Ln)p(Ln|Gk−1)
p(Gk|Gk−1)

where p(Ln|Gk−1) is the prior estimate of the robot’s location, p(Gk|Ln,Gk−1) represents the observation

likelihood, and p(Gk|Gk−1) is the normalization constant. Observations are assumed to be conditionally in-

dependent given location. Thus, p(Gk|Ln,Gk−1) is approximated as p(Gk|Ln). Likelihood that the observed

graph was generated by location, Ln is factored as two terms: (i) p(Zk|Ln), likelihood of the visual appear-

ance given location and (ii) p(Dk|Zk,Ln), likelihood of the observed spatial distances conditioned on visual

observations and location.

p(Gk|Ln,Gk−1) = p(Gk|Ln)

= p({Zk,Dk}|Ln) (3.8)

= p(Dk|Zk,Ln)p(Zk,|Ln)

The visual appearance likelihood term is expanded using the Chow-Liu approximation [11]. This expansion

approximates the discrete joint distribution p(z1, z2, . . . , z|v|) by the closest tree-structured Bayesian network

according to the Kullback-Leiber (KL) divergence criteria.

27
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Evaluating Visual Likelihood

[Cummins and Newman IJRR08] 

• Visual Words are Not Independent.

• Presence of some words is correlated as they 

are generated from the same underlying objects.

• Learn correlations via mutual information 

between features from training data.

Visual Appearance



0.54m
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Evaluating Spatial Likelihood

Spatial appearance term conditioned on visual appearance

p(Zk|Ln) ≈ p(zr|Ln)
|v|∏

q=2

p(zq|zpq , Ln) (3.9)

Here, zr is the root of the tree and zpq is the parent of zq in the Chow-Liu tree. These factors can further

be expressed in terms of prior probabilities, the visual detector model and conditionals obtained from training

data. For detailed derivation please refer to [17][15].

Conditioned on the visual appearance and location, the spatial appearance likelihood term is estimated

as follows:

p(Dk|Zk,Ln) =
|v|∏

i,j=1

Cij∏

n=1

p(dn
ij |zi, zj , Ln) (3.10)

Pairwise distance edges in the graph are considered independent of other edges given observations of their

end points. The likelihood of observing a pairwise distance p(dn
ij |zi, zj , Ln) is factored in terms of the prior

belief over the distance p(hij = br|Ln) from histogram, hij and the probability of seeing the distance given

belief, p(dn
ij |hij = br) via the range detector model. The likelihood is obtained by marginalizing over the

discrete range estimates, bk of the histogram, hij . The range detector model is assumed independent of

location.

p(Dk|Zk,Ln) =
|v|∏

i,j=1

Cij∏

n=1

R∑

r=1

p(dn
ij |hij = br)︸ ︷︷ ︸
Detrange

p(hij = br|Ln)
︸ ︷︷ ︸

histogram

(3.11)

3.3.2 Evaluating the Normalization Term

The normalization term p(Gk|Gk−1) is the total likelihood of the observation, Gk. An observation can come

from the set of locations currently in the robot’s map (M) as well as the set of all previously unknown

locations (M). Hence, p(Gk|Gk−1) can be expressed as a sum:

p(Gk|Gk−1) =
∑

m∈M

p(Gk|Lm)p(Lm|Gk−1) +
∑

u∈M

p(Gk|Lu)p(Lu|Gk−1) (3.12)

The second term involves summation over all unmapped places and cannot be directly computed. The

summation is approximated through the mean field approximation [32] by constructing an average place

model, Lavg = (Eavg,Havg), and
∑

u∈M p(Lu|Gk−1) is the prior probability of being at a new place which is

obtained by transforming the robot’s previous position in the topological map via a motion model.

28

What is our prior belief over 
distances?

Range measurement model
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True val

Likelihood of observing 0.54m 
given a noisy sensor

Account for all possible bins, across all measured range occurrences, over all observed pairs and 

incorporate a range sensor model



Rohan Paul and Paul Newman

How many graph edges to keep?

If       features are detected in scene how many pairwise distances should be checked ?
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Which graph edges to keep?

Insight: Features usually originate from objects possessing high local spatial correlation.

Consider distances to neighboring points.
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Local Spatial Correlations are Common

Insight: Preserve local spatial correlations by choosing only neighboring points.
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Delaunay Tessellation

Graph with Delaunay Tessellation

Complete Graph

Delaunay Tessellation is a triangulation such that no point is inside the circumcircle of any triangle.
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After tessellation          pairwise histograms are updated.

Tessellation algorithm has                   complexity.

O(Nf )

O(Nf logNf )

After Delaunay Tessellation
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Evaluation - New College Data Set (Smith IJRR09)

New College, Oxford
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Combining Vision and Laser



Rohan Paul and Paul Newman

Obtaining 3D Coordinates for Visual Features

Obtaining 3D coordinates for visual words by projecting laser points into 
camera frame after cross-calibration.

Laser point cloud
Laser points projected into the 

camera frame
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Results: Example Picking up Missed Loop Closures

Scene

Distinctive spatial similarity in graphs used by FAB-MAP 3D to infer a loop closure.

Perceived Graph
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Results: Example Picking up Missed Loop Closures

Loop closures declared by FABMAP 3D using spatial similarity, missed by FABMAP
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FAB−MAP 3D with Delaunay Tessellation

FAB−MAP 3D with Complete Graph Evaluation

Rohan Paul and Paul Newman

Precision-Recall Curves - The Central Result

Algorithm Recall at 100% 
Precision

Order (in Scene Complexity) Order in Num Scenes

FAB-MAP 42% Linear Linear

FAB-MAP 3D  with Complete Graph Evaluation 74% Quadratic Linear

FAB-MAP 3D  with Delaunay Tessellation 71% Log-Linear Linear
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Implementation Related Issues

Histogram: Number of Features per SceneSpeed-up with Delaunay Tessellation

Mean 116, Median 112, Std. dev. 48

• Online: avg. 314ms inference time/place

• Offline: 4.5 hrs for one off density estimation

• MATLAB implementation, 2.66GHz Intel Core 2 Duo machine.

Computational Overhead of FAB-MAP 3D
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Limitations

Dynamic ObjectsIncomplete laser coverage Shadows
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Conclusions - What have we done?

• Made use of easy to obtain local 

metric information (SFM, Stereo, 

Laser). 

• We learn at run time a probabilistic 

generative place model which 

captures  visual appearance 

(feature existence) and relative 

geometry.

• This makes a marked difference to 

precision recall - greatly increased 

recall at 100% precision

• Algorithm is linear in number of 

places
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FAB−MAP

FAB−MAP 3D with Delaunay Tessellation

FAB−MAP 3D with Complete Graph Evaluation

FABMAP-3D fully exploits scene structure and constitutes a new way to undertake robotic 
mapping with vision and laser.
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Rohan Paul and Paul Newman 

Mobile Robotics Group

University of Oxford

Thank You


