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Ascending Stairway Modeling Live Demo:

Toward Autonomous Multi-Floor Exploration

Jeffrey A. Delmerico, Jason J. Corso, David Baran, Philip David, and Julian Ryde

Abstract— Localization and modeling of stairways by mobile

robots can enable multi-floor exploration for those platforms

capable of stair traversal. No system yet presented is capable

of localizing a stairway on a map and estimating its properties,

two functions that would enable stairways to be considered

as traversable terrain in a path planning algorithm. The

system we propose to demonstrate performs detection and

modeling of ascending stairways while performing simultaneous

localization and mapping. Our system consists of two parts:

a computationally efficient detector that leverages geometric

cues from depth imagery to detect sets of ascending stairs,

and a stairway modeler that uses multiple detections to infer

the location and parameters of a stairway that is discovered

during exploration. Modeling the stairway as a whole will

enable exploration of higher floors of a building by allowing the

stairway to be incorporated into path planning by considering

it as a portal to new frontiers. Our intended demonstration will

highlight the performance of the system in accurate stairway

modeling and localization by observing with a mobile robot a

set of portable stairs that we will place in the demo area.

I. INTRODUCTION

Autonomous mobile robots have traditionally been re-
stricted to single floors of a building or outdoor areas
free of abrupt elevation changes such as curbs and stairs.
This restriction presents a significant limitation to real-world
applications, such as whole-building mapping and rescue
scenarios. Our work seeks a solution to this problem and
is motivated by the rich potential of an autonomous ground
robot that can climb stairs while exploring a multi-floor
building. Our proposed solution to this problem is a system to
detect and localize stairways in the environment during the
process of exploration, and model any identified stairways
in order to determine if they are traversable by the robot;
an overview is presented in Fig. ??. With a map of the
environment and estimated locations and parameters of the
stairways, the robot could plan a path that traverses the stairs
in order to explore the frontier at other elevations that were
previously inaccessible. Other systems have been proposed
for related tasks—primarily a single detection triggering
immediate traveral—but no existing work approaches the
problem in the context of the aforementioned scenario.
Autonomous multi-floor exploration is a new behavior for
ground robots, and we present this work as a first step toward
the realization of that capability.

Although our contribution is mainly toward semantic ob-
ject perception, and might therefore be more applicable to the
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Stair Edge Detection Extract stair edges from depth imagery by finding and
clustering lines of depth discontinuity

Stairway Modeling Generative model: inclined plane within bounding box
Localize model on map and estimate step dimensions

Extract edge points from point cloud

Aggregate edge points
over many observations

Fit stairway model to aggregated edges 

Fig. 1. High level workflow of the proposed system, consisting of
two modules: stair edge detection and stairway modeling. Stair edges are
extracted from depth imagery and collected over many observations into an
aggregated point cloud. Periodically, a generative model of a stairway is
fit to the aggregate cloud and its parameters re-estimated. The result is a
model localized with respect to the robot’s map of its environment.

SPME workshop at ICRA 2012 instead, we believe that the
work is best illustrated with a live demonstration—which is
not offered there—and that the intended application is more
in line with the higher-level semantic mapping themes of the
SPMK workshop.

II. DEMONSTRATION

We intend to demonstrate this system by showing it in
live operation while deployed on a mobile robot. We plan
to provide our own robot platform, as well as a set of
portable demonstration stairs—several full-sized steps of our
own construction—in order to facilitate the illustration of its
capabilities. However, if it is possible to use any stairways
within the building, we would prefer to demonstrate the sys-
tem in a more natural setting. Under teleoperation, the robot
will navigate around the provided demonstration area and
construct a map while detecting and modeling the stairway,
and localizing the model within the map. We can demonstrate
the accuracy of localization and model parameter estimation,
as well as the convergence of the model over multiple
observations.



Task-based World Model Verification

Jos Elfring Sjoerd van den Dries René van de Molengraft Maarten Steinbuch

Abstract— In order to fulfill typical household tasks, such
as fetching objects, robots need an accurate description of
their environment. Maintaining such a description, called world
model, requires (i) monitoring the environment for new objects
and (ii) updating object attributes in the world model whenever
needed. The focus in this work is on the latter of these two
subtasks. We present a generic framework that can be used
to keep a world model up-to-date. In addition, we present a
task dependent strategy that coordinates when to update which
object attributes. The task-based coordination strategy enables
robots to perform efficient world model verification. We present
a first the proof-of-concept experiment.

I. INTRODUCTION
As domestic robots are moving towards human popu-

lated environments, they are confronted with unstructured
and dynamically changing environments. In order to fulfill
typical household tasks, such as fetching objects, an accurate
description of the environment is indispensable. In this work,
we will refer to such an environmental description as world
model. We believe that a world model should at least contain
information about poses of semantically labeled objects, but
ideally contains information about other object attributes as
well, such as the color distribution, size or shape.

Once such a world model is obtained, it is important
to maintain it, i.e., to keep it up-to-date. Keeping a world
model up-to-date involves (i) monitoring the environment
for new objects and (ii) updating the current object attributes
whenever this is needed. This paper focuses on the latter of
these subtasks. Especially if the number of objects in the
world model becomes large, as in realistic scenarios, the
maintenance of a world model can be cumbersome. In order
to allow successful maintenance in these realistic scenarios,
we believe various requirements have to be met.

Closing the loop from world model to perception should
allow a fast and simple verification module, since the prior
knowledge provided by the world model simplifies the task.
If the perception system for example has to check if ‘that
black coat is still on the chair’, the prior knowledge changes
the task of ‘recognizing a black coat in a camera image’ to
‘verifying if there still is a black blob at the location of the
coat in the camera image’ (Requirement 1).

Secondly, the world modeling algorithm has to be flexible
regarding the object attributes. Robots should move towards
semantically richer world models. This means we do not
only want to be able to store or track positions of objects,
but also, e.g., color distributions or shapes. (Requirement 2).

All authors are with the Faculty of Mechanical Engineer-
ing, Eindhoven University of Technology, 5600 MB Eind-
hoven, The Netherlands {j.elfring, s.v.d.dries,
m.j.g.v.d.molengraft, m.steinbuch} at tue.nl

The coordination of attribute verification must be driven
by the task the robot has to perform. The world model
may contain many objects with many attributes but only a
subset of all objects and object attributes is relevant in the
context of the task. While picking up a bottle, the position
attribute of the bottle has to be very accurate whereas other
object attributes are allowed more uncertainty. If a robot is
waiting for a pancake to be ready it is useless to verify the
location of the pancake at tens of Hertz; if the robot has to
catch a ball, updating the ball’s position at tens of Hertz is
needed to allow the successful accomplishment of the task.
Our last requirement is a strategy that both efficiently, i.e.,
with a proper update rate, and effectively, i.e., the relevant
attributes only, coordinates when to update which attributes
(Requirement 3).

Closing the loop from world model to perception as
described in Requirement 1 is not new. In [1], adaptive
appearance manifold models are learned online with the
aim of improving the robustness of the detection algorithm.
In [2], non-rigid objects are detected using classifiers that
are updated based on the detections and [3] detects objects
using classifiers that are learned based on detections. We
present a generic framework that on the one hand allows
accommodating these methods and on the other hand enables
facilitating computationally cheap algorithms that can be
used to verify attributes such as color or position.

Both in tracking and perception literature, many different
attributes have been tracked such as positions and velocities
[4], color distributions [5], [6] or shapes [7], hence solutions
to Requirement 2 are extensively presented in existing litera-
ture. In this work, we do not aim at presenting new attribute
trackers but rather at introducing a generic framework that
allows accommodating any kind of tracker and a strategy
that provides these trackers with input data whenever this is
needed.

As stated in Requirement 3, we believe a strategy that
coordinates which specific attributes of which specific objects
are updated when is inevitable for both efficient and effective
updating of the world model. Previous work based on similar
ideas is scarce. In [8], [9], the methods used for state estima-
tion are varied, e.g., more robust but less accurate tracking
algorithms if the conditions deteriorate and precise tracking
if the conditions are good [9]. We are interested in varying
coordination strategies rather then estimation methods, i.e.,
when to update what rather then how to update. Furthermore,
visual object search approaches [10], [11] use attention to
find objects in a cluttered or unknown environment, i.e., they
focus on interesting parts of the environment only. We aim
at task-based verification of object attributes in a, at least



partially, known environment.

II. CONTRIBUTIONS

We believe that Requirements 1–3 are crucial in order to
allow both efficient and effective maintenance of a world
model. Current literature seems to either focus on detecting
new objects or updating single attributes only. Maintaining
a world model is broader than that. Efficient attribute ver-
ification is needed, which in turn requires both a generic
framework that accommodates estimating various kinds of
attributes and a task-based strategy that coordinates the
verification. Therefore, the main contributions of this work
are:

• A generic framework that allows both tracking and
verifying any object attribute using simple perceptual
routines that are informed by the world model

• A task-based coordination strategy that only updates
relevant attributes of relevant objects in the world model

• Validation in a first proof-of-concept experiment
The remainder of this paper is organized as follows. In

Section III the architecture of the proposed framework is
explained together with the representation of objects and
measurements. Then Section IV focuses on the implemen-
tation details and presents experimental results. Section V
summarizes the conclusions and presents a possible direction
for future research.

III. ARCHITECTURE AND REPRESENTATION

This section explains the architecture of the framework
proposed in this work and shown in Figure 1. Throughout
the Sections III-A–III-F, we explain the various components
and their interfaces.

A. World model

The world model as it is represented in this paper contains
a list of objects. Each object is represented by a collection of
both continuous object attributes, e.g., position, and discrete
object attributes, e.g., class label. The collection of object
attributes describes the object state at the instance level and
is represented by a probability distribution over the attribute
space. One of the main tasks of the world modeling algorithm
is data association: associating measurements with objects
that are present in the world model already or with new
objects or clutter (false positives). We use an anchoring
approach [12] that incorporates multiple hypothesis tracking
based data association [13]. Further details regarding the
anchoring and data association algorithm are beyond the
scope of this paper.

Once the data association problem is solved, the object
attributes are updated based on the measurements. Typically,
the trackers described in the introduction can be used for
this. We use a Bayesian framework to recursively refine our
state estimates in a predict–update cycle that incorporates
multiple models [14] and explicitly takes uncertainties into
account. Any object attribute estimator can be accommodated
and further details, again, are beyond the scope of this paper.

The probabilistic models and the settings used for an-
choring, tracking and data association are loaded from a
knowledge base, further explained in Section III-B. The
measurements used to update the attributes are generated in
the perception module explained in Section III-E and are
represented as explained in Section III-F.

B. Knowledge base

A knowledge base provides the tracking and data asso-
ciation algorithms mentioned above with the required prior
knowledge, i.e., models enabling prediction and probabilistic
models used during association. Representing this knowledge
in a separate knowledge base rather then incorporating it in
the world model simplifies configuring the world modeling
algorithm, e.g., setting different state estimators for objects.
The knowledge is represented by means of an XML-file.

C. Verification coordination

The aim of the coordination module is to control the object
verification. Based on the task, a list of objects related to that
task can be specified and loaded to the verification coordina-
tion module. Together with each object, a maximum allowed
uncertainty for the relevant object attributes is loaded.

Propagating the object attributes in the world model to
a desired point in time increases the uncertainty, updating
the attribute using a measurement decreases the uncertainty.
Based on the maximum allowed uncertainty and the un-
certainty in the world state provided by the world model,
it is decided which attributes of which objects need to be
updated. Currently, the list of relevant objects and attributes
per task are hand crafted. An interesting direction for future
work would be to let the robot autonomously deduce this
information from a common sense knowledge base.

D. Verification tasks

If the uncertainty in a predicted object attribute value is
too large, an attribute verification has to be performed, as
explained in Section III-C. In that case, the predicted attribute
value together with both a 2D and a 3D region-of-interest
(ROI) in the sensor data is sent to the perception module.
The size of a ROI is based on the size of the object and
the uncertainty on the predicted position. We assume that
the predicted attribute value together with the ROIs enables
using computationally cheap algorithms for the verification
task. If this assumption is not met, the rational behind the
proposed verification strategy does no longer hold and more
advanced detection algorithms are required.

E. Perception

The perceptual system consists out of two parts. The
first part detects object attribute values in raw sensor data
provided by the robot’s sensors. As a result this component
detects and recognizes both new objects and objects that were
detected before without using prior world model knowledge.
Any algorithm can be used for this part of the perceptual
task and we will not go into any details since this is not
relevant in the context of this paper.



Sensors
• Cameras
• Laser scanners
• . . .

Perception part I (III-E)

Object detection algorithms

Perception part II (III-E)

Verification of predicted at-
tribute values

Sensor data

?
Object occluded

Verification
task canceled

Object absent

Object falsified

Else
Object attribute
verified

Measurements (III-F)

World model (III-A)

• Anchoring
• Data association
• Attribute tracking

World state (III-A)

Knowledge base (III-B)

• Probabilistic association models
• State estimators
• Predicate grounding relations
• . . .

Verification coordinator (III-C)
Compare attribute uncertainty with al-
lowed uncertainty

Task (III-C)

• Task and object lists
• Allowed uncertainties

?
Uncertainty too large

Verification task

Uncertainty acceptable

No verification
needed

Verification task (III-D)

Fig. 1. Schematic overview of the proposed architecture. The numbers refer to the section explaining the components in more detail.

In the second part, the predicted object attribute values
contained in the verification task are verified using a light
weight algorithm. In this work, typical attributes of interest
are position and color. An example of a light weight verifi-
cation component is presented in Section IV-B.

Possible complicating factors in the second part of the
perception module are:

1) The object is absent in the ROI in the sensor data: If
an object cannot be detected in the ROI, this information is
fed into the world model, since the absence of an object is
valuable information in itself. The probability of the object
still being present will be decreased based on such observa-
tions. We will refer to this situation as object falsification.

2) The object is occluded: Occlusions can be detected
using depth information. If an object is occluded, no veri-

fication is possible and no falsification is allowed. With the
emerging presence of cheap 3D sensors such as the Microsoft
Kinect, we do not see the availability of depth information
as a restrictive assumption.

3) Visually identical objects fall in the same ROI: In this
case the ROIs will be merged and the verification problem
includes a clustering problem. However, the number of
clusters and reasonable initial guesses for the cluster centers
are provided by the world model. If visually identical objects
that are not present in the world model fall inside the ROI
of an object that needs verification, our approach will result
in inaccurate updates. More advanced detection algorithms,
e.g., the ones used in the first part of the perceptual system,
are required in that case.



F. Measurements
We distinguish between three different types of measure-

ments, represented by the three arrows entering the world
model block from above in Figure 1. From left to right these
three types of measurements are:

1) Non-verification measurements from part one of the
perception module. These measurements can either
instantiate new objects in the world model, update
attributes of existing objects or be neglected as being
false positives.

2) Falsification measurements from part two of the per-
ception module. Falsification measurements will be
used to remove objects from the world model.

3) Verification measurements from part two of the per-
ception module. These measurements include verified
object attributes and will only be used to update
attributes of existing objects in the world model.

In this work we want the measurements to be represented
by probability distributions. The rational is that we do not
want to loose information about the uncertainty of the sensor
and the detection algorithm. In case of comparing the sensor
data with a set of object models, the matching score contains
more information than the truncated result. Some example
measurements could be:

zclass = {cup : 0.7; mug : 0.3}

for a discrete attribute measurement of the class label being
cup with a probability of 0.7 or mug with a probability of
0.3, or:

zpos = N (x | µ,Σ)

if the measured continuous position attribute can be de-
scribed by a Gaussian with mean µ and covariance Σ.
The Bayesian world modeling algorithm introduced in Sec-
tion III-A exploits the trust the perception algorithm has in
its estimates and the available knowledge regarding sensor
characteristics such as noise and accuracy.

IV. EXPERIMENTS
This section presents the experiment that has been per-

formed to validate the ideas presented in the previous sec-
tions. We start by explaining the scenario in Section IV-A.
Then we explain all relevant details regarding the implemen-
tation in Section IV-B. After that, Section IV-C presents the
results.

A. Scenario
In the experiment, the AMIGO robot is asked to enter

a room. When AMIGO enters, he starts verifying a world
model that is assumed to be available from a previous trail.
Object attribute value uncertainties reduce and objects get
falsified.

Then AMIGO is invited to play the game of cups. During
this game, a ball is placed underneath one out of three
identical cups. An operator starts shuffling the cups around
and afterwards AMIGO has to tell the operator the location of
the ball. The initial locations of the green cups used during

the game are already verified during the first stage of the
experiment hence AMIGO knows where to go. During the
game, a very low position uncertainty is required to avoid
mixing the identities of the visually identical cups. Other
objects are permitted a higher uncertainty, since the object
attributes are less relevant in the context of the game.

B. Implementation

This section elaborates all implementation details that are
considered relevant for the scenario that is described in
Section IV-A.

1) When to update which object attributes: The verifica-
tion coordination component described in Section III-C and
shown in Figure 1 takes as an input a task and the world state
according to the robot’s world model. To keep things well-
presentable, we have defined two task only: playing-cups and
room-exploration. Both tasks are defined in a single XML-
file represented by the task block in Figure 1, that in addition
describes the maximum allowed uncertainty for the limited
set of object attributes that are considered relevant for this
state. World model objects that are not defined are permitted
a default uncertainty.

2) Cup position tracking: All objects, except for the three
green cups, are tracked using a Kalman filter (KF) with a
constant position motion model. The green cups are tracked
using a KF with a constant velocity motion model. All
KFs have a probability of correctly describing the position
of the object. This probability increases after associating
the object with verification or non-verification measurements
and decreases after associating the object with falsification
measurements.

3) Verifying attributes during the cups game: During the
game, the positions of the green cups are re-detected using
a light weight color detection algorithm:

1) Based on the color and the predicted position, an HSV
color range and both a 2D and a 3D ROI are defined

2) All pixels that fall within both the ROIs and the color
range are collected into a cluster

3) The center of this cluster is calculated in the 2D image
4) The 2D cluster center is transformed to a 3D position

which is fed back to the world model
The prior information provided by the world model simplifies
recognition of the cups to detecting green blobs.

During the game, the ROIs of the cups intersect regularly
and as a result, pixels can be part of multiple ROIs. In that
case, step two changes to:

2) Pixels that can originate from multiple objects are
clustered using k-means clustering

The initial centers for the k-means clustering are the pre-
dicted 3D object locations projected onto the 2D image. As
a result, the clustering converges in one or two iterations
only. During the experiment, the computation time for the
verification algorithm is in the order of one millisecond.

In Figure 2, three examples outputs of the verification
algorithm are given. The blue pixels represent pixels that
fall in the 2D and 3D ROIs and the color range of at



least one cup, the green crosses represent cluster centers
generated by the k-means clustering. In Figures 2(a) and
2(b) the cup on the foreground is the only object present in
the world model, hence no k-means clustering is needed. The
other cup is held close to disturb the verification algorithm.
In Figure 2(a) the depth information still allows correct
clustering. In Figure 2(b), a subset of the pixels belonging
to the distracting cup on the background are grouped in the
foreground cup cluster. As a result, the cluster center is off.
Finally, Figure 2(c) shows how the clustering succeeds in a
scenario with three cups that are present in the world model.

(a) (b) (c)

Fig. 2. Three scenarios showing the performance of the k-means clustering
In (a) and (b) the world model contains one object, hence k = 1, and one
disturbing object is placed nearby. In (c), all three cups are contained in the
world model, hence k = 3. The blue pixels are the pixels that have to be
clustered, the green crosses are the resulting cluster centers that will be fed
back to the world model.

4) Object falsification: During k-means clustering, clus-
ters might get empty. Furthermore, the ROIs might not
contain pixels within the color range provided by the world
model again resulting in an empty cluster. In the case of
empty clusters two explanations are plausible. Either the
object is not present within the ROI or the object is occluded
by another object. In the experiment, the depth information
is used for occlusion checking. If occlusions cannot explain
the empty clusters, object falsification measurements are
published to the world model.

C. Results

Figure 3(b) shows the robot’s view during the experiment
together with a world model overlay. The red spheres indicate
the positions of the objects in the world model, the text labels
show the class label, the color and a unique ID.

When AMIGO arrives at the table, the world model
contains a blue book, a red cup and three green cups as
shown in Figure 3(a). As can be seen in this figure, the
world model is outdated, i.e., some of the positions are off
and the red cup is absent. After verification, the red cup is
correctly falsified and the other positions are updated. The
updated world model is visualized in Figure 3(b).

Figure 4 shows the variances in the x-position of the
objects in the world model during the verification that was
shown in Figure 3. In the first stage of the experiment, all
objects on the table are allowed a variance of 0.001 m2.
The red line belongs to the red cup. Around t = 18, the
uncertainty of the red cup is larger than allowed and a
verification task is given. During the verification, the red
cup is correctly falsified. The blue line shows the variance

(a)

(b)

Fig. 3. AMIGO’s camera view with world mode overlay when arriving at
the table in (a) and after verifying the world model in (b)

belonging to the book’s x-position. During propagation of the
book position, the uncertainty increases and as a result, every
four or five seconds the position needs verification. Due to
the verification, the position can be updated and the variance
decreases to an acceptable level. The green line shows the
variance of one of the green cups. Initially, the variance
behaves similar to the variance of the book. However, around
t = 38 the task switches from room-exploration to playing-
cups. As a result, the allowed variance of the green cups
decreases and the verification tasks are sent about 28 times
a second.

The positions of the green cups during the game are shown
in Figures 5 and 6. Due to the high verification frequency the
robot is able to keep track of all three cups without mixing
identities despite occlusions and fast cup movements.

V. CONCLUSIONS AND FUTURE WORK

In domestic robotics, robots need a world model that
describes the current state of the world the robot is operating
in. Maintaining a world model requires (i) monitoring the
environment for new objects and (ii) verifying the states of
objects that are already included in the world model. The first
of these subtasks is well-studied whereas the second one is
not studied as a problem per sé. This work focuses on the
latter of these two subtasks.

First of all we have presented and implemented a generic
framework that allows verifying any object attribute. In
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Fig. 5. Positions of the three green cups during the game as a function of
time. The x-positions in (a) and the y-positions in (b).

addition, we have presented a first task-based strategy that
coordinates when to update which object attributes. The task
dependency has led to both efficient and effective world
model verification. The results of a first proof-of-concept
experiment were presented.

Future work consists of adding verification of different
attributes using different verification algorithms. This could
further proof the potential of our framework. In addition
we will investigate the possibility of letting the robot au-
tonomously deduce which attributes are relevant in the
context of the task from a common sense knowledge base.
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Fig. 6. The (x, y)-positions of the three green cups during the game as a
function of time.

ACKNOWLEDGMENT
The research leading to these results has received fund-

ing from the European Union Seventh Framework Pro-
gram FP7/2007-2013 under grant agreement no. 248942
RoboEarth.

REFERENCES

[1] J. Ding, Y. Huang, K. Huang, and T. Tan, ”Robust Object Tracking
via Online Learning of Adaptive Appearance Manifold”, 2011 IEEE
Int. Conf. on Computer Vision Workshops, pp 1863–1869, 2011.

[2] M. Godec, P.M. Roth, and H. Bischof, ”Hough-based Tracking of Non-
Rigid Objects”, In: Proc. 2011 IEEE Int. Conf. on Computer Vision,
pp 81–88, 2011.

[3] Z. Kalal, J. Matas, and K. Mikolajczyk, ”P-N Learning: Bootstrapping
Binary Classifiers by Structural Constraints”, In: Proc. 23rd IEEE
Conference on Computer Vision and Pattern Recognition, pp 49–56,
2010.

[4] J. Elfring, M.J.G. van de Molengraft, R.J.M. Janssen, and M. Stein-
buch, ”Two Level World Modeling for Cooperating Robots Using a
Multiple Hypotheses Filter”, In: 2011 IEEE Int. Conf. on Robotics and
Automation, pp 815–820, 2011.

[5] K. Nummiaro, E. Koller-Meier, and L. van Gool, ”An adaptive color-
based particle filter”, Image and Vision Computing, 21(1), pp 99–110,
2003.

[6] L. Sigal, S. Sclaroff, and V. Athitsos, ”Skin Color-Based Video Seg-
mentation under Time-Varying Illumination”, IEEE Trans on Pattern
Analysis and Machine Intelligence, 26(7), pp 862–877, 2004.

[7] T. De Laet, Rigorously Bayesian Multitarget Tracking and Localiza-
tion, Ph. D. thesis, Katholieke Universiteit Leuven, 2010. ISBN: 978-
94-6018-209-9.

[8] J.L. Crowley and F. Berard, ”Multi-Modal Tracking of Faces for
Video Communications”, In: 1997 IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition, 1997, pp 640–645, 1997.

[9] K. Toyama and G.D. Hager, ”Incremental Focus of Attention for
Robust Vision-Based Tracking”, Int. Journal of Computer Vision,
35(1), pp 45–63, 1999.

[10] P. Forssén, D. Meger, K. Lai, S. Helmer, J.J. Little, D.G. Lowe, ”In-
formed Visual Search: Combining Attention and Object Recognition”,
In: 2008 IEEE Int. Conf. on Robotics and Automation, pp 935–942,
2008.

[11] K. Shubina and J.K. Tsotsos, ”Visual search for an object in a
3D environment using a mobile robot”, Computer Vision and Image
Understanding, 114(5), pp 535–547, 2010.

[12] S. Coradeschi and A. Saffiotti, ”An Introduction to the Anchoring
Problem”, Robotics and Autonomous Systems, 43(2–3), pp 85–96,
2003.

[13] D.B. Reid, ”An Algorithm for Tracking Multiple Targets”, IEEE
Transactions on Automatic Control, AC-24(6), pp 843–854, 1979.

[14] X.R. Li and V.P. Jilkov, ”Survey of Maneuvering Target Tracking. Part
V: Multiple-Model Methods”, IEEE Transactions on Aerospace and
Electronic Systems, 41(4), pp 1255–1321, 2005.



Segmentation of Cluttered Scenes through Interactive Perception

Karol Hausman, Christian Bersch, Dejan Pangercic, Sarah Osentoski, Zoltan-Csaba Marton, Michael Beetz
{hausman, pangercic, marton, beetz}@cs.tum.edu,

christian.bersch@googlemail.com, sarah.osentoski@us.bosch.com

I. INTRODUCTION

For robot to perform its tasks competently, robustly and in
the right context it has to understand the course of its actions
and their consequences. For example, imagine the robot
being tasked with the clean up of the breakfast table. The
robot is confronted with a heavily cluttered scene and has to
be able to tell waste, dirty, clean and valuable objects apart.
The robot shall be equipped with the knowledge that will,
for instance, stop it from throwing away an expensive item.
Herein proposed approach elevates robot’s perception skills
in that it utilizes its capabilities to interact with the clutter
of objects. This allows for better segmentation and finally
also better object recognition by means of constraining the
recognition to a region or regions of interest.

Similar to Katz et al. [1] and Bergstrom et al. [2], we
propose a system that uses a robot arm to induce motions
in a scene to enable effective object segmentation. Our
system employs a combination of the following techniques:
i) estimation of a contact point and a push direction of the
robot’s end effector by detecting the concave corners in the
cluttered scene, ii) feature extraction using features proposed
by Shi and Tomasi and tracking using optical flow, and iii)
a novel clustering algorithm to segment the objects.

Segmentation of rigid objects from a video stream of
objects being moved by the robot has been addressed by
Fitzpatrick [3] and Kenney et al. [4]. In contrast, our arm
motion is not pre-planned but adapts to the scene, we make
use of the 3D data to segment the object candidates from the
background and we use a novel clustering approach for the
segmentation of textured objects.

Overview of the whole system is shown in Fig. 2. The
system will be demostrated live during the workshop.

II. ESTIMATION OF CONTACT POINT AND PUSH
DIRECTION

Since most commonly encountered household items have
convex outlines when observed from above, our system uses
local concavities in the 2D contour of an object group as
an indicator for boundaries between the objects. The robot
separates objects from each other by pushing its end effector
in between these boundaries.

A. Contact Points from Concave Corners
We restrict the problem of finding a contact point to the

table plane. Our algorithm employs 2D-image processing
techniques to select contact point candidates. The table
plane is estimated from the depth-camera’s point cloud data

Fig. 1. Top: PR2 robot successfully picking-up the object after segmenting
in it in clutter using herein proposed object segmentation algorithm.

using RANSAC and separated from the object points. The
remaining cloud points are projected into a virtual camera
view above the table. Since the projected cloud points are
sparse, we employ standard morphological operators and 2D-
contour search to identify a closed region, R, corresponding
to the group of objects.

This region’s outer contour is then searched for strong
local directional changes by applying a corner detector and
subsequently the corners that are placed at local concavities
are selected.

B. Push Direction and Execution

The push direction at a corner is set to be parallel to
the eigenvector corresponding to the larger eigenvalue of
the Shi-Tomasi covariance matrix. Intuitively, the dominant
eigenvector will align with the dominant gradient direction.
However, at a corner with two similar gradient responses
in two directions, the eigenvector becomes the bisector. As
only corners with roughly equal eigenvalues are chosen as
potential contact point candidates, the eigenvector of each
contact point candidate will bisect the angles of the contour
at the corner location.

III. OBJECT SEGMENTATION USING FEATURE
TRAJECTORIES

Once the robot�s end effector touches the objects, the
resulting object motions are used to discriminate between
the different items on the table. Feature points are tracked
in the scene and the resulting feature point trajectories are
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Fig. 2. The system proposed in the paper consists of three main nodes: a node for estimating the initial contact point and the push direction, a node

that extracts 2D-features and tracks them while it moves the robot arm in the push direction, and finally an object clustering node that assigns the tracked

features to objects.

clustered. The clustering is based on the idea that features

corresponding to the same objects must follow the same

translations and rotations.

A. Feature Trajectory Generation using Optical Flow
We take advantage of the objects’ texture properties by

extracting i = 1...N Shi-Tomasi features at the pixel loca-

tions {pi,0}Ni=1 from the initial scene at time t = 0, i.e.

before an interaction with the robot took place. The feature

locations correspond to responses of the Shi-Tomasi feature

detector. When the robot’s end effector interacts with the

object, a Lucas-Kanade tracker is used to compute the optical

flow of the sparse feature set. Using the optical flow, each

feature’s position pi,t is recorded over the image frames at

time t = 0...T while the robot is interacting with the objects.

That is, for each successfully tracked feature i, a trajectory

Si = {pi,t}Tt=0 is obtained.

B. Randomized Feature Trajectory Clustering with Rigid
Motion Hypotheses

After calculating the set of all feature trajectories S ≡
{Si}Ni=1, the goal is to partition this set such that all features

belonging to the same object are assigned the same object

index ci ∈ {1, ..,K}, where the number of objects K is not

known a priori.
We take advantage of the rigid body property of objects

and assume that each subset of the features trajectories S
belonging to the same object k are subjected to the same

sequence of rigid transformation Ak ≡ {Ak,t}T−1
t=0 , i.e. we

cluster features with respect to how well rigid transforma-

tions can explain their motions. As the objects only move on

the table plane, we restrict a possible rigid transformation

A to be composed of a 2D-rotation R, a 2D-translation

t and a scaling component s, i.e. A = s · [R|t]. The

scaling component compensates for the changes in size of

the projected objects in the camera image. The actual scaling

Algorithm 1: Randomized feature trajectory clustering

1 Input: Set of feature trajectories S ≡ {Si}Ni=1 where

Si = {pi,t}Tt=0

2 Output: object cluster count K, object cluster

assignments c = [ci]
N
i=1 where ci ∈ {1, ..,K}

3 for m := 1 to M do
4 km := 1, Sm := S
5 while |Sm| ≥ 2 do
6 draw 2 random trajectories Su,Sv ∈ Sm

7 generate sequence of rigid transformations:

Akm ≡ {Akm,t}T−1
t=0 from (Su,Sv)

8 for Sj in Sm do
9 sum squared residuals w.r.t to Akm :

rkm,j :=
�T−1

t=0 �pj,t+1 −Akm,tpj,t�22
10 if rkm,j < THRESHOLD then
11 Sm := Sm \ {Sj}

12 km := km + 1

13 Km := km
14 for Si in S do
15 Assign each trajectory to best matching rigid

transformation sequence:

c∗m,i := argmin{1,..,km,..,Km−1} rkm,i, where

rkm,i :=
�T−1

t=0 �pi,t+1 −Akm,tpi,t�22
16 Select best overall matching set of rigid transform

sequences: m∗ := argminm
�Km

km=1

�
i rkm,i·1[c∗m,i=km]�

i 1[c∗m,i=km]

17 Return: K := Km∗ , c :=
�
c∗m∗,i

�N
i=1

is not linear due to the perspective view, however, the error

resulting from this linearization is small as the objects are

displaced only in small amounts.



Fig. 3. Test scenes 1 to 8 from left to right. Top row: original scenes, middle row: contact point estimation, bottom row: segmentation after the first
push cycle. Please note, that successfully segmented objects were removed from the scene and the contact point estimation and segmentation cycle were
repeatedly executed.

The clustering algorithm we propose is outlined in Alg. 1,
and combines a divisive clustering approach with RANSAC-
style model hypothesis sampling. At the core of the algorithm
(lines 4–12), we randomly draw 2 tracked features u,v
and estimate a sequence of rigid transformations A1 from
their optical flow motions as first model hypothesis. The
feature trajectories Si that can be explained well by A1

are considered ”model inliers” and are removed from set of
feature trajectories. From the remaining set, again 2 features
are drawn to create a second model hypothesis A2 and all
inliers are removed. This process repeats until there are not
enough features left to create a new model hypothesis. This
process results in K hypotheses.

IV. EXPERIMENTS

Our system was deployed on Willow Garages PR2 robot.
Depth images were taken from a Kinect sensor mounted on
the robots head and the PR2s built-in 5-megapixel camera
was used for capturing images for feature extraction and
tracking.

A. Segmentation of Objects in Cluttered Scenes

We evaluated our system on eight tabletop scenes with
the cluttered background shown in Fig. 3. For each scene,
the original setup of objects, the detected contact point
candidates and push directions, and the feature clusters after
the first push cycle are shown in the respective row. Across
all runs using corner-based pushing 89% of all objects were
segmented successfully.

The segmentation of the scenes took 1.047 seconds on
average to compute, which also demonstrates that our algo-
rithm is suitable for real world settings.

B. Grasping

We also ran a grasping experiment on the scene 8 (Fig.3).
In this experiment, we use low-quality image from the Kinect
for the segmentation and an associated point cloud for the

calculation of the object pose. The accompanying video1 is
showing the above mentioned experiment.

C. Open Source Code

We provide the software2 and documentation3 as an open
source. In the workshop we plan to demostrate the segmen-
tation of textured objects using Kinect sensor and manually
interaction with the objects.

V. FUTURE WORK

The results show applicability of our system for objects
of various sizes, shapes and surface. Future work includes
integrating our approach with other object segmentation
techniques in order to account for textureless objects and
to further improve the segmentation rate. We also plan to
integrate an arm motion and a grasp planner which will
enable the robot to perform robust grasping and deal with
even more complex scenes.
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Fast segmentation of RGB-D images for semantic scene understanding
Dirk Holz, Alexander J. B. Trevor, Michael Dixon, Suat Gedikli and Radu B. Rusu

I. INTRODUCTION

As robots move away from pre-programmed action se-
quences in controlled laboratory setups towards complex
tasks in real-world scenarios, both the perception capabilities
of these systems and their abilities to acquire and model
semantic information must become more powerful. In this
context, fast means for pre-processing acquired sensory
information and segmenting task-relevant regions are an
enabling technology and a prerequisite for avoiding longer
delays in sense-plan-act cycles.

We present (on a poster and in a demo) two fast segmen-
tation methods for RGB-D images.

II. APPROXIMATE MESHES FOR PRE-PROCESSING

In the first method, we exploit the organized structure of
RGB-D images and apply an approximate surface reconstruc-
tion [1] by simply connecting adjacent image pixels. The
resulting mesh efficiently caches local neighborhoods for fur-
ther processing. Furthermore, we compute approximate sur-
face normals directly on the mesh and apply a multi-lateral
filtering step to considerably smooth the data. Using an
efficient region growing implementation and different region
models, we can efficiently compute plane segmentations and
full polygonalizations (Fig. 1), or segment locally smooth
regions and detect geometric shape primitives (Fig. 2).

III. DIRECT IMAGE SEGMENTATION

The second method also exploits the image structure by
using a connected component based technique. Each pixel
is compared to neighboring pixels (in a 4-connected sense)
using a comparison function (similar to the region models
above). Points are considered part of the same segment if
the comparison function returns true. Different comparison
functions can be used for different segmentation tasks, such
as a plane equation comparison (the dot product between
normals and range must match), euclidean distance, color, or
combinations of these. These can be run in a sequence and
with an optional mask, for example: tabletop objects can be
detected by first detecting planar regions, then using these
regions as a mask and segmenting with a euclidean distance
comparison (Fig. 3). See the Point Cloud Library [2] at
www.pointclouds.org for further details, documentation, and
an open source implementation.

D. Holz is with the University of Bonn, Bonn, Germany. A. J. B. Trevor is
with the Georgia Institute of Technology, Atlanta, Georgia, USA. M. Dixon,
S. Gedikli and R. B. Rusu are with Willow Garage, Inc., California, USA.

Contact: holz@ais.uni-bonn.de, atrevor@cc.gatech.edu

A demonstration video of the approach is available at
http://youtube.com/watch?v=LZ8l4w3qw3E.

(a) Input cloud (b) Constructed trian-
gle mesh

(c) Segmentation (d) Polygonalization

Fig. 1: Approx. surface reconstruction and segmentation.

Fig. 2: Detecting geometric shape primitives: planes (yel-
low), cylinders (cyan) and spheres (magenta).

Fig. 3: Planes and connected components.
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Semi-Autonomous Environment Mapping using GUI based Outline
Operating Instructions

Yohei Kakiuchi and Atsushi Tsuda and Shunichi Nozawa and Kei Okada and Masayuki Inaba

Abstract— There are many objects which have manipulable
link in a household environment. A humanoid robot working
in a household environment shared with humans needs to
recognize and manipulate such objects like a refrigerator and
a shelf. In order to automatically create a geometric model
for recognition and manipulation, a geometric model with
articulated link is constructed by a point cloud which is
observed by robot equipped with a 3D vision.

In our approach a robot and a human, using a GUI to
semi-autonomously command the robot, jointly manipulate
furniture entities and generate a map with geometric models
with articulated link at the same time.

I. INTRODUCTION

There are many daily assistive tasks which need operations
of furniture and tools with articulated link for a humanoid
robot in a household environment shared with humans. In
order to perform a task operating object with articulated
link, a robot needs to know about a geometric model which
contains a kinematic model, joint type and position.

In this paper, we propose a human supervised semantic
mapping. Human indicate clues to manipulate objects with
articulated link such as a drawer or a refrigerator, then a robot
autonomously manipulate objects using the clues and obtain
geometric models which contain information for operation
such as a handle position which can operate a link, how to
grasp the handle, and which direction a link move to.

II. GENERATING MAP FROM ROBOT MOTION

In order to automatically obtain environmental knowledge,
robot have to acquire a geometric model and a kinematic
model of object. As an example of environmental knowledge
acquisition by a robot, Blodowet al. [1] created a map of the
household environment with autonomously moving mobile
robot. This map is a semantic map which contains such
as the shelf position and the handle of the shelf that can
be manipulated. Creating a symbol during the generating a
semantic map has been determined by the number of knobs
or handles and the location of each [2]. In this case, the
geometric conditions were used for acquiring meaning, it is
difficult to infer the meaning of the object on the map.

We propose a human supervised robot motion with ob-
taining object model. A operator indicates outline operating
instructions for environment manipulation. A robot makes
a manipulation plan based on a sensor observation of en-
vironment. The robot presented to the plan to the operator.

Y. Kakiuchi, A. Tsuda, S. Nozawa, K. Okada and M. Inaba are
with Graduate School of Information Science and Technology The Uni-
versity of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, 113-8656 Tokyo, Japan
{youhei,tsuda,nozawa,k-okada,inaba}@jsk.t.u-tokyo.ac.jp
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Fig. 1. Robot opened shelf (left) GUI view, blue arrow indicating clicking
point (right)

The plan contains the trajectory of handle and humanoid’s
joint angle. The plan presented to the operator is approved
or modified, the robot executes the motion in accordance
with the plan. Outline the operating instructions shows place
suitable for manipulation, handle position for grasping or
the type of articulated mechanism. These outline operating
instructions are provided through pointing points obtained
from the 3D vision of robots using a GUI. A robot obtains
a geometric model by observation from robot’s 3D vision
during robot motion.

III. CONCLUSION
A robot executing a motion and generating an environment

model are performed at the same time. The former is execut-
ing the motion for environment manipulation by the human
using GUI. The latter is generating a geometric model, which
is necessary for an autonomous robot task, updated by the
observation during the robot motion.

Human indicated just a clue for operating objects which
have articulated link. From this information, robot can op-
erate articulated object and obtain the internal structure and
characteristics of the object unless the robot try to manipulate
it. We created a semantic map from these information which
was obtained by observing robot motion indicated through
outline operating instructions.
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Understanding Customers: Purchase Behaviors in Ubiquitous Market

Koji Kamei1,† Koya Sugimoto2,1 Hiroyuki Kidokoro3,1 Tetsushi Ikeda1

Masayuki Kanbara2,1 Kazuhiko Shinozawa1 Takahiro Miyashita1,3 and Norihiro Hagita1,2,3

Abstract— Shopping is a typical daily activity to be supported
by Networked Robotic Services. In a retail shop, networked
robots will be able to support both customers and the shop by
recommendation service if they can understand the customers’
interest from the observed purchase behaviors. We have con-
structed an experiment environment called ’Ubiquitous Market’
as an instance of ubiquitous networked robot system. Two types
of customers’ behaviors have been extracted. One distinguishes
whether a customer purchases an item on a shelf or not from
the local trajectories in front of the shelf. Another estimates
whether a customer visits a shelf or not from the sequences of
stop-by points and then recommends items.

Researches on network robot systems (NRS)[1] have fo-
cused on cooperation among service robots which overcomes
the limitations of stand-alone robots by having robots, en-
vironment sensors, and humans communicate and cooperate
through a network. Aiming at the development of life support
robots that coexist with people in human living environments,
many types of robots will deployed to multiple locations with
ubiquitous network technology as a social infrastructure. In
the project, the common functionalities are implemented as
Ubiquitous Network Robot (UNR) Platform[2].

Consider an interactive system installed in a real-world
shopping mall where visible robots recommend items to the
customers. The system plays three roles as interaction tech-
nology: as a ubiquitous environment that understands events
occurring in the real world, as a recommendation system that
chooses information to be presented to the customers, and as
a persuasion system in which the robots persuade the cus-
tomers. Ubiquitous Market is such an environment equipped
with UNR technologies that understands customers’ purchase
behaviors and supports their daily shopping activities in
brick-and-mortar shops.

When a customer intend to purchase several items from
retail shops, a sequence of activities occurs on both the
customer and shop agents. The customers’ behaviors are
observed by networked sensors that sometimes called as
“ambient intelligence.” Such behaviors should be symbolized
to describe shopping support services. Kanda[3] extracted
“spatial primitives” and “behavioral primitives” as structured
environmental information. Knowledge from marketing sci-
ence and consumer psychology also provides baseline for this
symbol-grounding problem. The structure of environment

*This work was in part supported by the Japanese Ministry of Internal
Affairs and Communications.

1ATR Intelligent Robotics and Communication Research Laboratories
2Dept. of Info. Science, Nara Institute of Science and Technology
3Graduate School of Info. Science and Technology, Osaka University
†K. Kamei is with ATR Intelligent Robotics and Communication Re-

search Laboratories, 2-2-2 Hikaridai Seika-cho, Kyoto 619-0237, Japan

should be defined and understood by integrating such kind of
human behaviors. The customer has to understand what he or
she wants to purchase, compare corresponding items, decide
whether to buy or not, and then pick it up. Shop agents have
to estimate items of the customer’s interests and the certainty
of purchase, and then provide appropriate information. Our
approach focused on the trajectories of customers observed
by a set of laser range finders in retail shop environment and
extracted two types of customers’ behaviors.

One distinguishes whether a customer purchases an item
on a shelf or not from the local trajectories in front of the
shelf. Though previous works estimated the degree of a cus-
tomer’s interest from duration of a stop, we focused on four
characteristics for each segment of local movement: such
as variance of vertical distance from the shelf, minimum of
the vertical distance, total distance of horizontal movement,
and total angle of direction changes. The proposed method
distinguishes customers who purchase items even when their
stop durations were not so long. Another estimates whether
a customer visits a shelf or not from the sequences of stop-
by points and then recommends items from robots on the
shelf [4]. Another estimates whether a customer visits a
shelf or not from the sequences of stop-by points and then
recommends items from robots on the shelf. The proposed
method estimates a shelf that a customer possibly visits
after observing more than three stop-by locations. In our
experiment, the precision of the estimation was 0.48 as a
baseline. Compared to this baseline, recommendation from
robots made the customers’ move to the estimated spot with
0.76 of probability.

In this work, we focused on two methods for recognizing
customers’ purchasing behaviors observed with UNR envi-
ronment. In the experiments, required knowledge about items
and their categories were limited so that we could organize
them by ourselves. To extend the scale of the shopping
experiments, the UNR Platform should provide means to
obtain such knowledge from the Web as proposed in Web-
enabled Robot [5].
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Elaborative Evaluation of RGB-D based Point Cloud Registration for
Personal Robots
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I. INTRODUCTION

The motivation for this work comes from the requirement
for a robust method of generating a functional model of
kitchen environments from RGB-D data. In order for mobile
robots to perform useful tasks such as opening and closing
of doors and drawers or retrieving objects and returning
them to appropriate places a detailed 3D map is required
with an accuracy to within 1cm, whereby information of the
environment can be extracted and processed into a semantic
and functional form for the robot [1], [2]. However in order
to build up such semantic maps, it is necessary to be able to
generate a reliable model of an area from sensor data without
the prior knowledge of that area. An excellent candidate
for recording 3D data for mapping are RGB-D cameras.
These are cameras that capture RGB images as well as
measure depth and associate a depth value to each image
pixel, generating 3D point clouds as the output.

In this work we consider building such a 3D model using
a hand-held RGB-D camera. In order to build the map from
such a camera, some form of SLAM system needs to be
utilized [3] which attempts to both simultaneously calculate
the path the camera has taken, and create a map of the area
from the data. We have qualitatively evaluated three openly
available algorithms for building 3D models [3], [4], [5], the
first of which was selected as the go ahead tool according to
the following criteria: accuracy, computational cost, memory
requirement and community support. An optimal point cloud
generated by [3] is depicted in Fig. 1, top1. As we see
in the bottom row close up views the model is far away
from the precision required for the segmentation of doors
and handles and thus subsequent grasping and opening.
The imperfections are mostly due to a critical component
of the SLAM process, the calculation of a transformation
between two camera frames by aligning respective 3D point
clouds. One approach to address this problem is to take
SIFT features [6], projected into 3D space using depth data,
and applying random consensus to obtain a transformation
between two frames. This can be a fast and accurate method
under certain conditions. Another approach is to use the
Iterative Closest Point (ICP) [7] algorithm, utilizing for
example point to plane error metrics and the Levenberg
Marquardt (LM) solver to converge the point clouds. This
is also effective, however is susceptible to local minima
and therefore requires initialization conditions which are

1Please note that the g2o global optimization technique was also used in
the creation of this point cloud.

Fig. 1: Complete point cloud model of a kitchen area as
created from an RGB-D SLAM system [3], illustrating
imperfections. (a) Shows the model being viewed from the
left side, plane 1 and plane 2 should be representing the same
wall in the model and are therefore misaligned. (b) Handle
1 and Handle 2 are the same handles from different point
clouds and are therefore misaligned

.
close to the optimal solution. Finally, there are algorithms
that make use of both depth and visual feature data. The
SLAM system in [3] uses both approaches based on the
heuristically selected number of SIFT features and the system
proposed by [8] uses a joint optimization method in order to
combine both dense point cloud and visual feature data in
one optimization step to calculate a transformation. In this
paper we performed a benchmark study with an objective
to determine the behaviour of an implementation of the
algorithm put forward by [8] in a number of distinct
sceneries.

II. JOINT OPTIMIZATION

In this section we will briefly recap the joint optimization
method proposed by Henry et al. [8]. This algorithm jointly
optimizes the transformation between two point clouds over



both the dense point associations and visual feature associa-
tions. SIFT feature was used to extract the latter.

The joint optimization equation is stated in Eq. 1. It jointly
optimizes two distance error metrices: point-to-plane for the
distance between dense point cloud correspondences and
the point-to-point for the distance between visual feature
correspondences. The visual feature correspondences are
calculated at the start and remain the same over all iterations.
T∗ is the transformation to be optimized. fs and ft are
the visual feature points projected into 3D space for source
and target point clouds respectively, and ps and pt are for
the dense points. Ad and Af are the number of features
and dense points, and are used to normalize the two parts
of the joint optimization function. wi and wj are weights
per correspondence for feature and dense associations. They
could be used to rate the reliability of the associations,
which may be obtained from the algorithm used to find
features or from some form of distance metric on the dense
clouds. In this implementation they are all set to 1. Finally
α is a weighting factor, giving either the visual feature
correspondence error metric or the dense point cloud error
metric more influence, whereby α = 1 is only the visual
feature error metric, α = 0 is only dense point error metric,
and anything between a mix of the both.

T∗ = argmin
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III. EVALUATION METHOD

The algorithm was implemented in the Point Cloud Li-
brary (PCL)1 and tested using ROS. Sets of point clouds
were recorded using the Microsoft Kinect camera. A stream
of clouds were recorded by moving the camera across each
scene, and afterwards individual clouds were selected from
this data.

To evaluate the joint algorithm, scenes were selected based
on the presence or absence of structure and texture, in order
to show in which conditions the joint optimization is of
benefit compared with using only dense point cloud data
or only visual association data. An additional parameter was
tested, the distance of the camera to the scene.

Altogether, seven scenes were taken for evaluation: the
4 shown in Fig. 2 and a typical office desk scene taken
at 1m, 2m and 3m distance. For the non textured scenes,
plain walls were selected which produced a small number
of visual features. For the non structured scenes flat walls
were recorded. For the featured and textured scene, part of
the kitchen scene was taken.

1Staged for submission to PCL.

(a) Textured and structured

(b) Textured and non structured

(c) Non textured and structured

(d) Non textured and non structured

Fig. 2: Examples of aligned point clouds for different scenes.

A dataset intended for testing RGB-D SLAM systems was
made available [9] however this was not used for this eval-
uation because the data set is more aimed at testing SLAM



Fig. 3: Distance error metric on converged point clouds.

systems rather than point cloud alignment. In particular there

are no instances of scenes with less structure or less texture.

It is also important to consider the performance not only of

consecutive point clouds, but point clouds with less overlap.

So for each scene, point clouds with varying overlap were

selected, based on percentage of point cloud overlap. Three

levels were taken approximately 95%, 70% and 50%.

In terms of the algorithm, we selected varying values of

α to be α = 0.0, α = 0.5 and α = 1.0, to contrast the

performance of the dense point cloud error metric, the visual

feature correspondence error metric, and a combination of

the both. It was also an aim of this study to determine the

how many visual feature points are required for accurate

alignment as well as to observe the deterioration of alignment

with insufficient features. Due to this, the algorithm does

not automatically fall back to α = 0 where visual features

were lacking, differing from [8]. For convergence criteria

the minimum change in the transformation was set to 1e-8,

Euclidean fitness error was set to 0 (never converge on this

criteria) and maximum number of iterations was set to 75.

In addition a standard ICP algorithm using Singular Value

Decomposition as a solver was also tested. This was the

standard implementation from PCL which uses point to point

error metrics. This was used to contrast to the joint algorithm

with α set to 0, which uses LM and point to plane error

metrics, which may be susceptible to different local minima.

As described above, RANSAC is used to remove outlier

feature associations, as well as to provide an initial transfor-

mation for the optimization function. However when there

are a low number of features, this initial transformation can

often be much worse than providing no initial transformation

at all, and therefore no RANSAC initialization has been used

for the non textured scenes.

We used a distance error metric to evaluate each test,

which was calculated by first finding point correspondences

using nearest neighbour search, rejecting correspondences

over a distance of 1cm
2

(as to ignore non overlapping

sections of the clouds) and normalizing the error over the

number of correspondences. It is important to note this

metric evaluates the structural alignment of clouds, and does

not take matching point colour into account. Therefore flat

surfaces may obtain very good results even when the textures

are completely misaligned.

IV. RESULTS

The results can be seen in Fig. 3.

For the textured scenes, it is apparent that for all different

values of α, the performance was roughly the same, that is,

there was no benefit from the joint optimization of both error

metrics.

The non textured scenes showed a significant improve-

ment in decreasing error when jointly optimizing with dense

correspondences, or using only dense correspondences. This

was expected as the dense 3D point cloud data will help

improve the alignment where visual feature points are lack-

ing. Taking the test case of no texture with structure and

50% point cloud overlap, it can be clearly seen that there is

a decrease in error as α decreases, that is, more weight is

given to the dense point cloud error metric.

The point cloud overlap also played an important role,

whereby less overlap resulted in generally more error or in

some cases no convergence (no feature, no structure). This

2
Accounting for Kinect’s precision: http://www.ros.org/wiki/

openni_kinect/kinect_accuracy.

http://www.ros.org/wiki/openni_kinect/kinect_accuracy
http://www.ros.org/wiki/openni_kinect/kinect_accuracy


is likely due to the fact that less visual feature points and
less structure are available for alignment in point cloud pairs
with less overlap.

Minimum number of visual features is a critical factor
when incorporating distance between visual associations as
an error metric. Below a certain amount of visual features,
typically less than 25, it has been seen that the point clouds
will never converge when using some or all feature error
metric component (α > 0). This is made very clear from
no texture no structure in both 70% and 50% overlap, as
α = 0.5 has about the same error as α = 1.

Not only is minimum number of visual features an im-
portant factor when utilizing visual feature correspondences
error metric, but also the distribution of features. Take for
instance when all features occur on a straight line (as in
Fig. 2d), this allows the point clouds to essentially pivot
about this line during alignment, as there is insufficient data
to constrict the alignment correctly. This should be taken into
account if visual features are to be automatically discarded.

For determining RGBDSLAM suitability, the error met-
ric is not sufficient in itself to identify misalignment of
texture, or significant misalignment of point clouds. Upon
visual inspection of point cloud pairs, it was found that there
was such a gross misalignment similar to that seen in Fig.
1, particularly for the untextured scenarios.

It appears that the SVD test case was superior in every
scenario. However in actual fact there was often significant
misalignment of texture between clouds, as the error metric
did not take misalignment of texture into account. This was
also true for the α = 0 test cases.

In terms of execution speed, for our implementation
it typically takes between 15-30 seconds on an desktop
computer for the joint optimization function to converge. In
nearly all cases it converges based on the minimum change
of transformation criteria. Before the optimization can run
the point normals also need to be calculated for the point
to plane error metric, which also typically takes 30 seconds.
This execution speed rules this algorithm out in its current
state for realtime RGB-D SLAM operation, as for realtime
operation, many point clouds need to be aligned per second.
However it is still viable for an an offline processing mode,
or for implementation on the GPU.

V. CONCLUSIONS AND FUTURE WORK

The take home message of this experiment is two-fold.
On one hand we evaluated behaviour of the state-of-the-art
algorithm for the registration of RGB-D point clouds in terms
of the combination of textured, non textured, structured and
non-structured indoor scenes. On the other hand we showed
that even in the presence of the algorithm favorable condi-
tions, the point-based registration is not enough to acquire
semantic maps that personal robots could use reliably. We
therefore believe that the following research avenues shall
be explored.

First, we will explore the registration based on priors.
For example as the scene is being mapped, segmentation of
walls, floors or fixtures will also take place, to provide more

(a) Registration with RGB-D features (b) Registration by aligning seg-
mented handles

Fig. 4
information about the scene, such as the principle alignment
axes. Consecutive frames can then be registered not only
based on alignment of visual associations and dense point
clouds, but also based on the alignment of these segmented
parts or planes. We have already begun to investigate such a
solution, by extracting and using cupboard handles as the
third component in the joint optimization equation. (See
Fig. 4) This method shows promise, particularly addressing
alignment issues illustrated in Fig. 1.

A registration method based on planes has been proposed
[10], this is another line of work that we will pursue and add
into the joint optimization framework. Planes are essentially
difficult to consistently match but are on the other hand
dominant features in the environment.

Another option to increase the accuracy of the registration
is to combine the RGB-D camera with the sensors (such as
accelerometers or gyroscopes) for the camera pose estima-
tion.
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Abstract— We describe an efficient image-based localization

system which can be used for real-time, continuous semantic

localization within a known environment. Our system can pre-

cisely localize a camera in real-time from a video stream within

a fairly large scene that has been reconstructed offline using

structure from motion (SfM). This is achieved by interleaving

a fast keypoint tracker that uses BRIEF descriptors, with a

direct 2D-to-3D matching approach for recognizing 3D points

in the map. Our approach does not require the construction of

an explicit semantic map. Rather semantic information can be

associated with the 3D points in the SfM reconstruction and

can be retrieved via recognition during online localization.

I. INTRODUCTION

In robotics, semantic localization refers to the task where
the robot must report its location semantically with respect to
objects or regions in the scene rather than reporting 6-DOF
pose or position coordinates. In prior work on semantic local-
ization using contextual maps [1], coarse location estimates
could be recovered using only three states – nearby, near
and far with respect to semantic landmarks in the scene. In
contrast, our system aims for precise, semantic localization
based on real-time 6-DOF image-based localization [2].

We represent the map with a 3D point cloud reconstruction
computed using SfM, which also contains multiple DAISY
feature descriptors [3,4] associated with the 3D points. By
tracking keypoints in video and matching them to the 3D
points, our system continuously estimates a precise pose
estimate in real-time. The main idea involves interleaving
a fast keypoint tracker that uses BRIEF features [5] with
an efficient approach for direct 2D-to-3D matching. The
2D-to-3D matching avoids the need for online extraction
of scale-invariant features. Instead, offline we construct an
indexed database containing multiple DAISY descriptors per
3D point extracted at multiple scales. The key to efficiency
lies in invoking DAISY descriptor extraction and matching
sparingly during online localization, and in distributing this
computation over a window of successive frames. Fig. 1
shows the trajectory of a camera mounted on a quadrotor
micro-aerial vehicle (MAV), computed using our real-time
localization system, as the MAV is flown manually1.

Unlike our work, visual SLAM (VSLAM) systems have
the flexibility of being able to localize a camera within an
unknown scene [6,7]. However, semantic localization in an
unknown scene can be extremely challenging. Objects must
be recognized by their categories, which is very difficult
to achieve even without real-time constraints [8]. Although,
prebuilt maps are necessary in our method, this also provides

1See http://goo.gl/Vp6ps for a video of our real-time system.

Fig. 1. The trajectory of a quadrotor micro aerial vehicle (MAV) within a
8m × 5m room computed using our method. The SfM reconstruction has
76K points. A video with the recognized landmarks are shown in red. The
corresponding 3D points are shown on the map.

the underlying framework for storing detailed semantic in-
formation along with 3D points in the scene. During online
localization, semantic information can be retrieved via visual
recognition of 3D points in the map which are subsequently
tracked in video. Our system can handle maps with an order
of magnitude more 3D points than typically handled by
VSLAM systems. This makes our system robust and enables
both continuous localization over long durations within large
scenes as well as fast relocalization whenever needed.

II. OUR METHOD

We represent the scene with a 3D reconstruction in a
global coordinate frame, which is computed using SfM from
an image sequence. The calibrated images are used to build
a database of DAISY feature descriptors associated with the
3D points. A kd-tree index is constructed over the descriptors
to support efficient approximate nearest neighbor (ANN)
queries during online feature matching. Fig. 2 shows an
overview of the various steps.

A. Map Construction

The map is built offline using the following steps:
- The input images are processed using SfM [9].
- The cameras are grouped into overlapping clusters.
- Keypoints and DAISY descriptors are extracted at multi-

ple scales in the images and associated with the 3D points.
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Fig. 2. Overview of the offline and online processing steps in our
system. As mentioned in Section I, extraction of DAISY features and 2D-3D
matching queries are not executed at every frame.

- A kd-tree is built for all the descriptors. Appropriate
lookup tables are built to support efficient queries to find
which image or 3D point a feature descriptor belongs to.

Semantic labels can be added to the 3D points by annotating
the images with object names and bounding boxes [9]. Using
the 2D-3D correspondences obtained from SfM, the labels
can be easily mapped from pixels to subsets of 3D points.

B. Place Recognition

In large scenes, global matching can be difficult due to
greater ambiguity in feature descriptors. To address this,
we perform coarse place recognition to filter erroneous
2D-3D matches before 6-DOF pose estimation step. As a
result, fewer RANSAC hypotheses are required during robust
pose estimation, making that step more efficient. For place
recognition, we cluster nearby cameras based on SfM results
by solving an overlapping view clustering problem where
cameras with many SfM points in common are grouped into
the same cluster [10]. When localizing an image, the most
likely camera group is selected using a simple voting scheme
over the set of matching descriptors returned by the ANN
query on the descriptor group.

C. Real-time Localization

Our algorithm aims for real-time localization over long
periods and at avoiding fluctuations in the frame-rate. At its
core lies a fast keypoint tracker. Keypoints (Harris corners)
from one frame are tracked in the following frame by match-
ing to candidate keypoints within a local search window
in the next frame [11]. Binary feature descriptors (BRIEF)
[5] are used to find the best frame-to-frame matches. This
fast tracker is interleaved with an efficient approach to find
which 3D points in the map correspond to the tracked
keypoints. The camera pose for each frame is robustly
estimated from these 2D-3D matches. For determining these
matches, DAISY descriptors [3,4] must be extracted. This
can be computationally expensive depending on the number
of descriptors extracted and queried in the kd-tree. Our
system amortizes this cost by requiring that the feature
matching be performed on demand and by spreading the
computation over a window of successive frames.

III. RESULTS

A single-threaded C++ implementation of our system runs
at an average frame-rate exceeding 30Hz on multiple datasets
on a laptop with an Intel Core 2 Duo 2.66GHz processor
running Windows 7. It is about fives times faster than the
single-threaded implementation of [12], which runs at 6Hz
(and at 20Hz using four cores). To test the feasibility of our
method for onboard processing on a small MAV, we designed
our own quadrotor vehicle mounted with the PointGrey Fire-
flyMV camera and a FitPC2i2 computer running Windows
7. Our algorithm runs at about 12Hz on the FitPC.

IV. CONCLUSIONS

Our real-time localization system [2] can be easily ex-
tended for semantic localization, by augmenting the 3D
points in the map with semantic labels. For example, this can
be done by manually inserting annotation in the 2D images
used for map construction (offline SfM) and automatically
transferring the labels to the 3D points in the map. For an
indoor scene, the labels could refer to small objects, (e.g.
books, CDs), larger objects (e.g., furniture) or a particular
room in the scene.

During online localization, our system recognizes subsets
of 3D points in the map using an efficient 2D-to-3D matching
approach and then tracks the 3D points in video. Whatever
semantic labels are stored with the tracked 3D points can
be used to recognize objects or locations in the video.
Additional semantic information can be inferred from the
camera pose estimate and from the accurate 3D map where
objects and semantic locations are precisely localized. For
instance, the relative location or distances to nearby objects
that are not yet visible in the camera can be predicted using
this information.
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Recently, the proliferation of cheap and effective sensor
devices for 3D perception, like depth cameras and 3D laser
systems, has promoted the development of accurate and
detailed object detection. The perception, representation and
classification of objects is not only relevant for navigation
tasks and semantic description of unstructured environments,
but also has great importance for robot manipulation and
grasping. Grasping action is better guided by object affor-
dances that can be extracted from the object parts like pro-
truding segments. Some categories of human artifacts often
exhibit specific parts made for grasping, like the handles in
hammers and mugs. Thus, the affordances of such objects
could be detected through their categorization and semantic
segmentation. Classification is often based on appearance
features extracted from specific observed objects. On the
other hand, categorization is the identification of the class
an object belongs to and must depend on invariant attributes
related to the shape and structure.

In this work, we extend the manipulation planning system
presented in [1] for a robot arm with eye-in-hand laser
scanner that is capable of performing 3D object reconstruc-
tion, segmentation, categorization and grasp planning on
selected parts of the objects. The experimental setup consists
of a Comau SMART SiX manipulator (6 dofs) equipped
with a Schunk PG-70 gripper and a SICK LMS 400 laser
range-finder mounted in eye-in-hand configuration on the
manipulator wrist. The range measurements are gathered
during the motion of the robotic arm and registered to
achieve a complete point cloud. The system observes one
or more objects lying on a dominant plane. Objects are
detected by removing outliers, extracting the dominant plane
and clustering the points above the plane. In particular,
clustering is efficiently performed by exploiting the spatial
and temporal coherence of scans to build a proximity graph.

Since polygonal mesh representation is required to plan
motion and grasping, the object surface is reconstructed
using power crust algorithm [2]. The obtained mesh is
segmented by constructing its corresponding Reeb graph
based on the integral geodesic function [3]. The Reed graph
allows the identification of object parts which are candidate
for being grasped. In our experiments, four categories have
been considered: doll, jug, horse and table. Object class is
recognized by matching the computed graph with the graph
of each category. Figure 1 illustrates the processing steps for
two instances of the horse class. Finally, the grasping and

Fig. 1. From left to right the raw scan data (with a small picture of the
real object), the clustered point cloud of the object, the reconstructed mesh
(in gray), the colored segmented mesh and the annotated Reeb Graph for
two instances of horse class (for clarity only the vertex labels are shown).

robot arm motion are planned and performed on the proper
affordance for the object class.

Reeb graph segmentation provides a topological decom-
position of the shape of an object which is likely to identify
semantic object’s parts that are candidate components for
being grasped. However, it could occur that two different
classes have the same Reeb graph. To overcome this ambi-
guity we improve the categorization method proposed in [1]
by using the annotated Reeb Graph. We propose to label
each node corresponding to an object part with its normalized
volume and each edge with the cosine of the angle between
the principal inertial axes of the object parts connected by
the edge. The prototypical Reeb graph is annotated with
the average values and variance of the weigths computed
on a training set. The categorization of an object is solved
as a labeled graph matching problem by manipulating the
weighted adjacency matrices. The permutation matrix P
that maps the vertices of the graph to classify to those
of each prototype graph is computed. Then, the distance
between the object and a class prototype is measured by
the distance between their corresponding adjacency matrices
�A1 − P A2 P−1�. Thus, the proposed metric allows to
discriminate between topologically similar object classes
without relying on too specific geometric features.
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From Object Categories to Grasp Transfer Using Probabilistic

Reasoning

Marianna Madry Dan Song Danica Kragic

Abstract— We address the problem of transferring task-

specific grasp strategies from a known to novel object using

information about an object category. Our system relates

knowledge about: (a) several physical object properties, (b)

object functionality and (c) task constrains in order to find

a suitable grasp. We demonstrate that by choosing an object

representation that encodes diverse objects properties and

integrates information from different visual sensors our system

can not only find objects that afford an assigned task, but also

generate and successfully transfer task-based grasp within and

across object categories.

Perception of and interaction with objects is one of the

key requirements for a robot acting in the real environment.

Although excellent examples of finding and manipulating a

specific object in a scene have been reported (Hasio et al.,

2010, Welke et al. 2010) there is no system that is capable

of flexibly and robustly localizing and grasping an arbitrary

object that fulfills a certain functionality. Thus, executing

tasks such as ”Robot, bring me something to drink from.”

or “Robot, give me something to hammer with.”.

The aspect of function is related to that of affordances

(Greeno, 1994) and has been addressed in works that learn

relations between objects and actions (Fritz et al., 2006,

Sahin et al., 2007). However, none of these consider the role

of task in their model: task intention of the agent affects the

type of action (grasp) to apply, i.e. not just any grasp can be

applied on the object, see Fig. 1.

We present a system that allows not only to plan a

suitable grasp for a given task, but also enables transfer of
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grasp knowledge between objects that share similar physical

attributes and/or have the same functionality. To this end,

we develop and evaluate an object representation that links

information about an object, task and action.

The experimental setup is a scene containing multiple

objects. Individual object candidates are first segmented

(Björkman et al., 2010), categorized and then used as the

input to a grasp generation and transfer module (Song et al.,

2010). We integrate various 2D and 3D features describing

object texture, color and shape to obtain a robust object rep-

resentation. We demonstrate that encoding complementary

object properties, not only significantly improves robustness

of the categorization system, but assures relevant balance

between discrimination and generalization in the represen-

tation. This allows to distinguish objects that both belong

to the same functional category, but significantly differ in

physical properties, and objects that afford different tasks,

but are alike in color and shape.

The most suitable grasp parameters are inferred by the

probabilistic grasp reasoning module based on information

about an object category and assigned task. Results are

illustrated by marking the grasp point probability around

each object. For the pouring task (Fig. 2b), the likelihoods of

the points around the mugs and bottle are clearly higher than

for the screwdriver indicating that they are the only objects

affording the task. Moreover, their likelihood maps are darker

on the top, since the robot hand should not block the opening

of an object. Summarizing, the proposed framework enables

a robot to choose the objects that afford the assigned task

while plan the grasp that satisfies the constraints posed

by the task, and transfer grasp knowledge between objects

that belong to the same category, even under considerable

differences in appearance and physical properties.



Towards Reliable Object Anchoring in Highly Dynamic Traffic Scenes
Ming Li, Wei Li, Jian Wang, Qingquan Li, and Andreas Nüchter

Symbol grounding is the problem of how the meaning of a
symbol is to be grounded in something other than just more
meaningless symbols [3]. This open problem in robotics
and artificial intelligence is most challenging. The object
anchoring problem is the lightweight version of symbol
grounding, as it restricts the symbols to refer to objects, thus
avoiding abstract concepts or attributes [2].
This demonstration presents work in progress, a novel

approach for mapping highly dynamic environments, i.e., we
design a system capable for mapping road traffic scenarios
like given in Figure 1. Given 3D laser scans acquired at a
high frame rate and no other sensor input, a 3D map is built
by removing dynamic parts of the scene and estimating the
ego-motion of the vehicle precisely at the same time. To
achieve this, we have combined reliable and fast 3D scan
matching in an ICP-like fashion with semantic perception,
object tracking and recognition.
We extend the well-known ICP algorithm, available in

“3DTK – The 3D Toolkit” [1] for HDL-64 laser scan data
and build a system for solving the simultaneous localization
and mapping problem in urban road scenarios. As the pose
of the car is unknown, the geometric structure of overlapping
3D scans has to be considered for registration. However,
this structure is changing, due to change of position of
the other moving objects. Therefore, moving objects need
firstly to be identified and be removed. We use a semantic-
driven approach for solving this task of identifying dynamic
objects in 3D scans. The overall system is called dynamic
VeloSLAM. To be more precise, we execute the following
steps:
1) First, we segment the 3D point cloud. Here a problem
arises with all objects standing on the ground. For
example, the feet of a human have roughly the same
height value as the ground at the point he is standing
on. The feet and the floor form only a crease edge,
no jump edge. Thus, we use a special ground removal

The research was partially supported by the National Natural Science
Foundation of China (Research Fund for International Young Scientists,
Program NO: 41050110437 and Research Fund for Youth Project, Program
NO: 41001306) and the Sino-German Center for Research Promotion GZ
692. The authors are with the Wuhan University, China and the Jacobs
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Fig. 1. Typical scenario, where we aim at precise 3D mapping. See also http://youtu.be/bHaZpQ 5wg8

method and then the objects are nicely separated.
2) After the ground segmentation, one scan of point cloud
was divided into many separated objects. In a typical
urban environment, there is a wide variety of objects
such as vehicles, pedestrians, buildings, etc. We use
low-level geometric features, i.e., PCA features, for
classification of the objects.

3) The interpreted objects are tracked using a Kalman
filter. Each cluster is tracked separately, and the track-
ing is used to improve the classification described
above. The multi-hypothesis approach in combination
with either nearest-neighbor data association or global
optimization give the algorithm its stability.

4) Dynamic VeloSLAM considers clusters, which are not
matched as possible new targets, and a new tracker is
initialized. If a cluster cannot be matched, we keep
the hypothesis for a certain number of 3D scans,
thus ensuring the possibility for reacquisition. After
exceeding the threshold, the tracker is deleted.

5) If the motion detected of a cluster exceeds a thresh-
old, we consider the object as dynamic. All dynamic
objects are removed for recovering the vehicle motion
and to build a map.

6) Finally, we use our 6D SLAM method as described
in [4]. Its basis is a fast and reliable scan matching
algorithm for ICP, a heuristic for closing loops effi-
ciently, and a Lu/Milios-style relaxation.

To validate our approach, we collected a data set on the
road from Wuhan to Huangshi. We select a roundabout in
the road as main experimental scene 1. The demonstration
show the results on the mentioned data set.
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[1] Andreas Nüchter et al. 3DTK – The 3D Toolkit. http://

threedtk.de/, February 2012.
[2] S. Coradeschi and A. Saffiotti. An introduction to the anchoring

problem. Journal of Robotics and Autonomous Systems (JRAS), 43(2–
3):85–96, 2003.

[3] S. Harnad. The symbol grounding problem. Physica D, 42:335–346,
1990.
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Leveraging Semantic Context: Robot Planning with a Conditional Random Field
Model

John G. Rogers III and Henrik I. Christensen

Service robots can assist humans in a variety of domestic tasks
such as meal preparation, fetch and carry, and clean-up. Robots can
leverage contextual cues within their environments to help them
understand how to perform their duties. Context can take many
forms such as that which exists between objects (a light switch is
close to a door), as well as that which exists between places and
objects (certain things are found in certain rooms). By leveraging
place and object context, robots can be made to understand domestic
environments and perform object search tasks more efficiently.

We have developed a technique described in [3] which uses a
probabilistic model to represent the context of objects in places to
perform an object search task in a domestic environment. We extend
the idea of using virtual objects and rooms of [1] through the use
of our probabilistic model. We leverage the context of places seen
in a topological map when considering which unknown region to
explore, to be the one most likely to contain the object for which
the robot is searching. Each object found in a room will influence
the label on the room and affect the likelihood of finding the target
object.

A variety of software and hardware modules are used in our
mobile robot system. Our robot is a Segway RMP200 mobile
robot base with Hokuyo UTM30 as well as SICK laser scanners.
The robot has a Directed Perception PTU 46-70 with an Asus
Xtion Pro Live 3D camera, a Nikon D90 DSLR camera. The
robot also has a Schunk gripper is also mounted on a linear
actuator for picking up objects. The software is based upon the
Robot Operating System (ROS) [2]. We use the GTsam nonlinear
optimization library with a modular mapping framework that we
have developed called OmniMapper. Room regions are segmented
using a Gaussian region analysis technique described in previous
work. Objects are segmented on tabletop surfaces through 3D
point cloud analysis. Object recognition is performed by matching
geometrically consistent SURF features against a database of known
objects. If the object is not recognized in a database of known
objects, then it is classified by a group of relevance vector machines
trained on visual word histograms quantized from SURF features.

We introduced a probabilistic cognitive model (PCM) for place
and object classification using conditional random fields in [3].
Objects and rooms are each represented as nodes in an undirected
graphical model; their labels are given by multinomial distributions.
There are two types of edges in this graph: between room nodes
which indicate adjacency in a topological map, and between objects
and rooms which indicate that object is within that room. The
posterior distribution on this graphical model is approximated by
loopy belief propagation. Objects which fail to be recognized by
the object recognition module, but have been categorized by the
object categorization module are given the specific measurement
from the object classification module as their prior measurement.
If the object recognition module recognizes the object, then it is
clamped to the recognized class. Clamped nodes are used to select
conditional probability tables in their neighbors and are skipped by
the loopy belief propagation algorithm. If a new measurement is

made of a previously mapped object, then the distribution with the
lowest entropy is used as the measurement in the graphical model.

We have developed a planning module which uses the probabilis-
tic model to select robot actions to perform an object search task.
The PCM Planner selects actions in a Markov Decision Process
framework. At each state, the robot chooses an action from the set
Move, Search, Examine, Fetch. The Move action can be performed
to transition to another room which is topologically adjacent to the
one in which the robot currently inhabits. The PCM hypothesized by
the planner for this action is the same as the current PCM, but with
the robot in the desired adjacent room. The Search action is used
to try to find objects in the current room using the segmentation
module. The result of the search action in the hypothesized next
state is that a new object is found by the robot. A uniform prior
is placed on this new object; after the posterior is computed with
LBP, the context of the current room will affect the label of the
hypothesized object. The Examine action is selected by the planner
to look at a previously segmented or categorized object and try to
identify it directly with the recognition module. The hypothesized
next PCM state upgrades the object categorized label distribution to
a clamped, known recognition. The final action, Fetch, is terminal
and represents the robot making its final choice; choosing this object
as the solution to the object search task.

The PCM planner computes a sequence of actions leading it
to the terminal Fetch action; however, since this relies heavily
upon hypothesized results, we only execute the first action of the
sequence and then re-plan based upon its result. The Move action
sends coordinates of the center of the target room Gaussian as the
destination for the motion controller. The Search action instructs
the base controller to move to waypoints aligned with the major
and minor axes of ellipsoidal regions described by the covariance
matrix of the room Gaussian. While the robot is moving to these
positions, objects on table surfaces are likely to be seen as they pass
nearby. The Examine action moves the base to within 2 meters of
the target object, saccades the PTU to aim the DSLR camera, and
takes a high resolution image which is processed by the recognition
and classification modules.

We have presented a technique for leveraging contextual cues in
the form of room adjacency and object in room affinity in a Markov
decision planner framework. The problem addressed is to leverage
the context offered from room and object identification to find an
element of an object class in an unknown indoor environment.
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World Modeling in Robotics:

Probabilistic Multiple Hypothesis Anchoring

Sjoerd van den Dries Jos Elfring René van de Molengraft Maarten Steinbuch

I. INTRODUCTION

Domestic robots are typically confronted with a complex,
dynamically changing and unstructured environment. In or-
der to adequately perform tasks such as safe navigation and
object manipulation, robots need an accurate description of
the world. Such an environmental description, here referred
to as world model, is constructed based on perceived object
features and must store and keep track of the objects in the
world and their attributes.

Requirements of such a world modeling algorithm are:
(1) semantic richness: object descriptions must be semanti-
cally annotated, i.e., stored with human-readable attributes
such as position, color and class such that human-defined
tasks can be mapped to the world description, and the
algorithm must allow multiple attributes to be stored and
maintained simultaneously; (2) probabilistic nature: due to
sensor limitations and prediction uncertainty, uncertainty
must be explicitly represented and dealt with in the system
by using probabilistic representations and calculations; (3)

data association and attribute maintenance: measured object
features must be linked to and update object descriptions,
while dealing with possible ambiguities; (4) exploitation of
prior knowledge: existing knowledge about the behavior
of objects, e.g., movement, expected locations, should be
used as much as possible; (5) computationally feasible and
scalable: the system must run real-time on a robot, even in
cluttered scenarios with many objects.

We present Probabilistic Multiple Hypothesis Anchoring
(PMHA), a world modeling algorithm that fulfills these re-
quirements by uniquely extending perceptual anchoring ([2])
with an efficient Bayesian multiple hypothesis framework
([3], [1]) and a generalized multiple-model object tracking
approach ([4]).

II. PROBABILISTIC MULTIPLE HYPOTHESIS ANCHORING

The PMHA algorithm works as follows:
• Measured object features are received as input from

perception routines. These features are assumed to
have a probabilistic representation, explicitly stating the
amount of uncertainty. (Req. 2)

• The measured features are mapped to semantically rich
structures using a predicate grounding relation known
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from anchoring, e.g., certain hue-saturation-value color
ranges are mapped to the color ’blue’, relative coordi-
nate frames are mapped to absolute coordinate frames.
(Req. 1)

• Semantic features are associated to new objects or
existing objects in the world model by generating mul-
tiple association hypotheses according to the multiple
hypothesis framework. Hypothesis probabilities are cal-
culated using a Bayesian prior-likelihood calculation.
(Req. 2, 3)

• Within each hypothesis, object attributes are updated
based on the probabilistic semantic features. The object
attributes are also stored in a probabilistic way, e.g., the
Cartesian position is stored as a Gaussian. (Req. 2, 3)

• Non-measured object attributes are predicted using a
multi-model approach: multiple behavior models may
predict future states of different attributes, e.g., position
or color, again generating multiple hypotheses. The
behavior models can be both physics-based, e.g., a
constant-velocity model, and common-sense based, e.g.,
a model stating that John comes home at 5pm. (Req. 4)

To ensure computational feasibility (Req. 5), gating, lim-
ited hypotheses generation and hypothesis pruning are used,
as well as efficient implementation of the algorithm using
track trees and clustering ([3], [1]).

III. EXPERIMENTS AND FUTURE WORK

The potential of the algorithm has been demonstrated
in several experiments, including the tracking of multiple
people in a room, solving ambiguities about the identi-
ties of objects, and verification and falsification of object
positions and colors based on cheap perception routines.
Future work includes extending the behavior models and
predicate grounding relations used, as well as combining the
multiple hypothesis framework with more efficient methods
for storing and retrieving object descriptions.
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Shape based Object Class Recognition from 3D CAD Models

Walter Wohlkinger and Aitor Aldoma and Markus Vincze

Fig. 1: The main idea of this paper is to use large collections of 3D CAD models as knowledge representations to explain the world.
Hierarchically organized 3D models in large numbers build the basis for the system. Linking to WordNet and additional class specific
information such as context, size, appearance and applicable force allows for semantic manipulation of object categories. A synthetic
view generation process enables the matching algorithms to be trained on these synthetic models. Given objects captured by a 3D sensor
as shown in the topmost row, the shape descriptors enable the matching of the sensed point clouds to synthetic views, approximately
resembling the sensed object.

I. ABSTRACT

The domestic setting with its plethora of categories and
their intraclass variety demands great generalization skills
from a service robot. The categories are characterized mostly
by their shape ranging from low intraclass diversification as
in the case of fruits and simple objects like bottles up to
high intraclass variety of classes such as liquid containers,
furniture, and especially toys. 3D object and object class
recognition gained momentum with the arrival of low-cost
RGB-D sensors and enables robotic tasks not feasible years
ago. With these robots starting to tackle real-word scenarios,
fast and reliable object and object class recognition is
needed. Especially in robotic manipulation, where object
recognition and object classification have to work from all
possible viewpoints of an object, data collection for training
becomes a bottleneck. Scaling object class recognition to
hundreds of classes still requires extensive time and many
objects for learning. To overcome the training issue, we
introduce a methodology for learning 3D descriptors from
synthetic CAD-models for classification of objects at first
glance, where classification rates and speed are suited for
robotics tasks.

Wohlkinger, Aldoma and Vincze are with Vision4Robotics Group, Au-
tomation and Control Institute, Vienna University of Technology, Austria
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We provide this in 3DNet ( 3d-net.org ), a free resource
for object class recognition and 6DOF pose estimation from
point cloud data. 3DNet provides a large-scale hierarchical
CAD-model databases with increasing numbers of classes
and difficulty with 10, 50, 100 and 200 object classes
together with evaluation datasets that contain thousands
of scenes captured with a RGB-D sensor. 3DNet further
provides an open-source framework based on the Point
Cloud Library (PCL) for testing new descriptors and
benchmarking of state-of-the-art descriptors together with
pose estimation procedures to enable robotics tasks such as
search and grasping.

The proposed system only requires a 3D sensor such as a
Microsoft Kinect or Asus Xtion and is able to deliver object
classification results on a standard consumer notebook with
10 frames per second for scenes with objects on a flat support
plane. With additional pose alignment, scale calculation and
a scale invariant grasp planner, robotic grasping of categories
can be tackled.



Mobile Manipulation Object Search using Co-occurrences and Capacity

Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez

Abstract— Object search is an integral part of daily life, and

in the quest for competent mobile manipulation robots it is

an unavoidable problem. Previous approaches have suggested

that object co-occurrence information is useful in object search.

We present a novel generative model for representing both co-

occurrence structure and spatial constraints, and use this to

perform belief-space planning in object search. We demonstrate

the model on a detailed simulation involving a PR2 robot.

I. INTRODUCTION

Consider the following example of searching for a large
mixing bowl in the kitchen when preparing a meal. There are
three cupboard shelves that have been partially viewed, two
containing stacks of plates, the other some dish detergent.
Other objects appear to be in the back, but they are occluded,
and we need to remove the objects in front to continue
searching the shelves. Which shelf should we look at?

Even though the bowl has not been observed yet, it seems
intuitive to us to keep looking on a shelf with plates because
they have closer function to bowls. Suppose we further
observe that of the two shelves with plates, one is small,
the other large. If we assume a bowl, if present, is equally
likely to be anywhere in the cupboard, and that both regions
incur the same exploration cost, then the large region is more
desirable to look at since more objects can be expected.
Moreover, given that mixing bowls are usually large, we may
even determine that the bowl cannot fit in the small region
and eliminate that from consideration.

The above example illustrates two aspects of object search
we wish to capture in our model. First, certain categories of
objects tend to co-occur with each other, such as plates and
bowls in the example. We will be agnostic to the causes
of similarities (e.g., function, shape, color, etc.), and simply
rely on co-occurrences as an indicator of similarity. Second,
in the latter half of the example, we also used geometric
information to choose between unseen regions. Here we un-
derstood that object types have various volume distributions,
and knew that unseen regions had some remaining capacity.
Our model captures both intuitions illustrated above.

Works such as [?] and [?] have previously demonstrated
that co-occurrence information is useful for guiding ob-
ject search. In particular, both use object co-occurrences
to determine the compatability of the target object with
various household locations, given observations of other
objects in the vicinity. However, neither consider geometric
constraints, nor are they easily extendible to do so. Moreover,
manipulation is not integrated in either framework.

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139
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Fig. 1. Graphical representation of our model; see text below for details.

II. MODEL AND EXECUTION

We represent co-occurrence information and spatial con-
straints using the generative model shown in Figure ??.
We assume the environment is partitioned into a set of
containers, each containing both seen and unseen object
types. To model type similarity, we introduce the notion of
a location’s composition (θ ), a latent distribution over object
types, and supply a logistic-normal prior that captures type
co-occurrences. The observed object types in the container
then inform about the unknown ones via θ . By reasoning
about the total volume that objects may occupy, we can check
whether they fit within the known capacity of the container.

To find the target object, an agent needs to determine
which containers likely contain the target object. This can
be inferred from the above model, by determining in each
container how likely the target object is one of the currently
unobserved objects (if any exist). There are also costs as-
sociated with switching between containers and performing
manipulation actions (e.g., moving occluding objects out of
the way to reveal hidden objects). To tradeoff these costs,
we use the online belief-space planner described in [?] to
select next actions. The planner uses the probability that the
query object type is in each container to determine whether
to continue searching the current container, or to switch to
another container if the current one seems unpromising.

The above object search framework was implemented in
simulation with a mobile manipulator modeled on the Willow
Garage PR2 robot. A sample execution can be found at:
http://youtu.be/cnWK8aBHmu0

REFERENCES

[1] T. Kollar and N. Roy, “Utilizing object-object and object-scene context
when planning to find things,” in ICRA, May 2009.

[2] M. Hanheide, C. Gretton, R. Dearden, N. Hawes, J. L. Wyatt,
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