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Abstract

We propose an empirical performance evaluation of six different 2D object recognition techniques. For

this purpose, two novel recognition methods that we have developed with the aim to fulfill increasing

industrial demands are compared to the normalized cross correlation, the sum of absolute differences,

and the Hausdorff distance as three standard similarity measures in industrial applications, as well as to

PatMaxR© — an object recognition tool developed by Cognex. Additionally, a new method for refining

the object’s pose based on a least-squares adjustment is included in our analysis. After a description of the

respective methods, several criteria that allow an objective evaluation of object recognition approaches

are introduced . Experiments on real images are used to apply the proposed criteria. The experimen-

tal set-up used for the evaluation measurements is explained in detail. The results are illustrated and

analyzed extensively.



1 Introduction

This work is based on the scientific collaboration of the Chair for Photogrammetry and Remote Sensing

at the Technische Universit¨at München and the MVTec Software Company in Munich. Both institutions

are currently concerned with research in the field of object recognition. In this collaboration we have de-

veloped two novel recognition methods with the aim to fulfill increasing industrial demands. Therefore,

we are strongly interested in an empirical evaluation of object recognition techniques.

Object recognition is used in many computer vision applications. It is particularly useful for indus-

trial inspection tasks, where often an image of an object must be aligned with a model of the object. The

transformation (pose) obtained by the object recognition process can be used for various tasks, e.g., pick

and place operations or quality control. In most cases, the model of the object is generated from an image

of the object. This 2D approach is taken because it usually is too costly or time consuming to create a

more complicated model, e.g., a 3D CAD model. Therefore, in industrial inspection tasks one is usually

interested in matching a 2D model of an object to the image. The object may be transformed by a cer-

tain class of transformations, e.g., rigid transformations, similarity transformations, or general 2D affine

transformations. The latter are usually taken as an approximation to the true perspective transformations

an object may undergo.

A large number of object recognition strategies exist. All approaches to object recognition examined

in this paper — possibly with the exception of PatMaxR© — use pixels as their geometric features, i.e.,

not higher level features like lines or elliptic arcs. Since PatMaxR© is a commercial software tool, a

detailed technical description is not available and therefore no statements about the used features can be

made within the scope of this technical report. Nevertheless, we included PatMaxR© in our evaluation

because it is one of the most powerful commercial object recognition tools. Thus, we are able to rate the

performance of our two novel approaches not only by comparing them to standard recognition techniques

but also to a high-end software product.

Several methods have been proposed to recognize objects in images by matching 2D models to

images. A survey of matching approaches is given in [Brown, 1992]. In most 2D matching approaches

the model is systematically compared to the image using all degrees of freedom of the chosen class of

transformations. The comparison is based on a suitable similarity measure (also called match metric).

The maxima or minima of the similarity measure are used to decide whether an object is present in the

image and to determine its pose. To speed up the recognition process, the search is usually done in a

coarse-to-fine manner, e.g., by using image pyramids [Tanimoto, 1981].

The simplest class of object recognition methods is based on the gray values of the model and image

itself and uses normalized cross correlation or the sum of squared or absolute differences as a similarity

measure [Brown, 1992]. Normalized cross correlation is invariant to linear brightness changes but is

very sensitive to clutter and occlusion as well as nonlinear contrast changes. The sum of gray value

differences is not robust to any of these changes, but can be made robust to linear brightness changes
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by explicitly incorporating them into the similarity measure, and to a moderate amount of occlusion and

clutter by computing the similarity measure in a statistically robust manner [Lai and Fang, 1999].

A more complex class of object recognition methods does not use the gray values of the model

or object itself, but uses the object’s edges for matching. Two example representatives of this class

are [Borgefors, 1988] and [Rucklidge, 1997]. In all existing approaches, the edges are segmented, i.e.,

a binary image is computed for both the model and the search image. Usually, the edge pixels are

defined as the pixels in the image where the magnitude of the gradient is maximum in the direction of the

gradient. Various similarity measures can then be used to compare the model to the image. The similarity

measure in [Borgefors, 1988] computes the average distance of the model edges and the image edges.

The disadvantage of this similarity measure is that it is not robust to occlusions because the distance to

the nearest edge increases significantly if some of the edges of the model are missing in the image.

The Hausdorff distance similarity measure used in [Rucklidge, 1997] tries to remedy this shortcom-

ing by calculating the maximum of thek-th largest distance of the model edges to the image edges and

the l-th largest distance of the image edges to the model edges. If the model containsn points and the

image containsm edge points, the similarity measure is robust to 100k/n% occlusion and 100l/m%

clutter. Unfortunately, an estimate form is needed to determinel, which is usually not available.

All of these similarity measures have the disadvantage that they do not take into account the direction

of the edges. In [Olson and Huttenlocher, 1997] it is shown that disregarding the edge direction infor-

mation leads to false positive instances of the model in the image. The similarity measure proposed in

[Olson and Huttenlocher, 1997] tries to improve this by modifying the Hausdorff distance to also mea-

sure the angle difference between the model and image edges. Unfortunately, the implementation is

based on multiple distance transformations, which makes the algorithm too computationally expensive

for industrial inspection.

Finally, another class of edge based object recognition algorithms is based on the generalized Hough

transform (GHT) [Ballard, 1981]. Approaches of this kind have the advantage that they are robust to

occlusion as well as clutter. Unfortunately, the GHT in the conventional form requires large amounts of

memory and long computation time to recognize the object.

In all of the above approaches, the edge image is binarized. This makes the object recognition

algorithm invariant only against a narrow range of illumination changes. If the image contrast is lowered,

progressively fewer edge points will be segmented, which has the same effects as progressively larger

occlusion.

In this paper our two new approaches are analyzed and their performance is compared to those of

PatMaxR©and three of the above mentioned approaches. Additionally, our new method for refining the

object’s pose, i.e., improving the accuracy of the transformation parameters, based on a least-squares

adjustment is included in our evaluation. The analysis of the performance characteristics of object recog-

nition methods is an important issue. First, it helps to identify breakdown points of the algorithm, i.e.,
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areas where the algorithm cannot be used because some of the assumptions it makes are violated. Sec-

ond, it makes an algorithm comparable to other algorithms, thus helping users in selecting the appropriate

method for the task they have to solve. Therefore, in this paper an attempt is made to characterize the per-

formance of six selected different object recognition approaches: The first two methods to be analyzed

are theNormalized Cross Correlation[Brown, 1992] and theSum of Absolute Differences, because they

are rather widely spread methods in industry and therefore well known in the application area of object

recognition. TheHausdorff Distance[Rucklidge, 1997] is the third candidate, which is also the core

of many recognition implementations, because of its higher robustness against occlusions and clutter in

contrast to the sum of absolute differences and even to the normalized cross correlation. Additionally,

PatMaxR© and two novel approaches, which are referred to asShape-Based Matching[Steger, 2001] and

Modified Hough Transform[Ulrich, 2001, Ulrich et al., 2001a, Ulrich et al., 2001b] below, are included

in our analysis. The least-squares adjustment of the object’s pose assumes approximate values for the

transformation parameters and therefore, is no self-contained object recognition method. Thus, it can be

used to improve the accuracy of the returned parameters from any recognition technique that uses the

edge position and edge orientation as features by a subsequent execution of the least-squares adjustment.

In our current study we use the shape-based matching as basis for the least-squares adjustment. The

development of our new approaches was motivated by the increasing industrial demands like real-time

computation and high recognition accuracy. Therefore, the study is mainly concerned with the robust-

ness, the subpixel accuracy, and the required computation time of the seven candidate algorithms under

different external circumstances.

The paper is organized as follows. In section 2 the recognition methods to be analyzed are introduced.

Since the normalized cross correlation, the sum of absolute differences and the Hausdorff distance are

standard computer vision techniques and the implementation details of PatMaxR© are not known, the

main focus is set to our three novel approaches. The performance evaluation is presented in section 3,

which includes the description of the evaluation criteria and the employed experimental set-up as well as

the analysis of the obtained results. The conclusions in section 4 complete this study.

2 Evaluated Object Recognition Methods

First of all, we introduce some definitions that facilitate the comparison between the seven techniques.

All recognition methods have in common that they require some form of representation of the object to

be found, which will be calledmodelbelow. The modelM is generated from an image of the object

to be recognized. A region of interest (ROI) R specifies the object’s location in the image. The image

part defined byR is calledreference imageIr. The image, in which the object should be recognized,

will be referred to as thesearch imageIs. Almost all object recognition approaches can be split into two

successive phases: theoffline phaseincluding the generation of the model and theonline phase, in which
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the constructed model is used to find the object in the search image.

The transformation classT , e.g., translations or euclidean, similarity, affine, or arbitrary projective

transformations, specifies the degrees of freedom of the object, i.e., which transformations the object

may undergo in the search image. For all similarity measures the object recognition step is performed by

transforming the model to a user-limited range of discrete transformationsTi ∈ T within the transforma-

tion class. For each transformed modelM t
i = TiM the similarity measure is calculated betweenM t and

the corresponding representation of the search image. The representation can, for example, be described

by the raw gray values in both images (e.g., when using the normalized cross correlation or the sum of

absolute differences) or by the corresponding binarized edges (e.g., when using the Hausdorff distance).

The maximum or minimum of the match metric then indicates the pose of the recognized object.

2.1 Normalized Cross Correlation

The normalized cross correlationC at position(x, y) in Is is computed as follows:

C(x, y) =
1
n

∑
(u,v)∈R

(
Ir(u, v) − µr

σr
· Is(x + u, y + v) − µs(x, y)

σs(x, y)

)
. (1)

Here,µ andσ are the mean and the standard deviation of the gray values in the reference and the search

image, respectively, andn specifies the number of points inR. The normalization causes the cross

correlation to be unaffected by linear brightness changes in the search image (see [Brown, 1992]).

For the purpose of evaluating the performance of the normalized cross correlation we use — as one

typical representative — the current implementation of theMatrox Imaging Library(MIL), which is a

software development toolkit ofMatrox Electronic Systems Ltd.[Matrox, 2001]. Some specific imple-

mentation characteristics should be explained to ensure the correct appraisal of the evaluation results:

The pattern matching algorithm is able to find a predefined object under rigid motion, i.e., translation

and rotation. A hierarchical search strategy using image pyramids is used to speed up the recognition.

The quality of the match is returned by calculating a match score value asScore = max(C, 0)2 · 100%.

The subpixel accuracy of the object position is achieved by a surface fit to the match scores around the

peak. Thus, the exact peak position can be calculated from the equation of the surface. The refinement

of the object orientation is not comprehensively explained in the documentation, but we suppose the

refinement of the obtained discrete object orientation is realized by a finer resampling of the orientation

in the angle neighborhood of the maximum score and recalculating the cross correlation for each refined

angle.
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2.2 Sum of Absolute Differences

The similarity measure based on the sum of absolute differencesD [Brown, 1992] atIs(x, y) is calcu-

lated by:

Error(x, y) = D(x, y) (2)

=
1
n

∑
(u,v)∈R

|Is(x − u, y − v) − Ir(u, v)| .

Thus,D indicates the average difference of the gray values. Since the sum of absolute differences is a

measure of dissimilarity, we also denoteD asError.
The special implementation we investigate considers rigid motion and makes use of image pyramids

to speed up the recognition process. The position and orientation of the best match, i.e., the match with

smallest error, is returned. Additionally, the user is able to specify the maximum average error of the

match to be tolerated. The lower this value is, the faster the operator runs, since fewer matches must be

traced down the pyramid. Subpixel accuracy of position and the refinement of the discrete orientation

are calculated by extrapolating the minimum ofD.

2.3 Hausdorff Distance

The Hausdorff distance measures the extent to which each pixel of the binarized reference image lies

near some pixel of the binarized search image and vice versa. The binarization can be done by a number

of different image processing algorithms, e.g., edge detectors like Sobel or Canny [Canny, 1986] oper-

ators, line detectors [Steger, 1998], or corner detectors [F¨orstner, 1994]. We use the implementation of

[Rucklidge, 1997] for evaluation purpose. To be able to compare the results of the Hausdorff distance to

the shape-based similarity measure and the modified Hough transform the Sobel filter is used, which is

also used in our two approaches. To reduce the sensitivity to outliers, the symmetric partial undirected

Hausdorff distance is used. LetP r andP s be the two point sets obtained in the reference image and in

the search image respectively. The symmetric partial undirected Hausdorff distance is then computed by

HfF fR(P r, P s) = max(hfF (P r, P s), hfR(P s, P r)) (3)

hfF (P r, P s) = kth
pr

i∈P r
min

ps
i∈P s

‖pr
i − ps

i‖ (4)

hfR(P s, P r) = lth
ps

i∈P s
min

pr
i∈P r

‖ps
i − pr

i ‖ . (5)

wherefF andfR are called theforward fractionand thereverse fractionandkth denotes thek-th largest

value. Here,k andfF are related byfF = k
n , wheren is the number of points in the reference image

andl andfR are related byfR = l
m , wherem is the number of points in the search image.

Due to the lack of time we did not implement the Hausdorff distance by ourselves but used the

original implementation by Rucklidge [Rucklidge, 1997]. The program expects the forward and the
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reverse fraction as well as the thresholds for the forward and the reverse distance as input data. Since

the method of [Rucklidge, 1997] returns all matches that fulfill its score and distance criteria, the best

match was selected based on the minimum forward distance. If more than one match had the same

minimum forward distance, the match with the maximum forward fraction was selected as the best match.

Only translations of the object can be recognized and no subpixel refinement is included. Although the

parameter space is treated in a hierarchical way there is no use of image pyramids, which makes the

algorithm very slow.

2.4 PatMaxR©

As described in its documentation [Cognex, 2000] PatMaxR© uses geometric information. It does this by

applying a three-step geometric measurement process to an object: First, it identifies and isolates the key

individual features within the reference image and measures characteristics such as shape, dimensions,

angle, arcs, and shading. Then, it corresponds the spatial relationships between the key features of the

model to the search image, encompassing both distance and relative angle. By analyzing the geometric

information from both the features and spatial relationships, PatMaxR© is able to determine the object’s

position, orientation and scale precisely, i.e., the accuracy is not limited to a quantized sampling grid.

The model representation, however, which can be visualized by PatMaxR©, apparently consists of

subpixel precise edge points and respective edge directions. From this we can conclude that PatMaxR©

uses similar features as the shape-based matching, in contrast to its documentation.

To speed up the search, a coarse-to-fine approach is implemented. Indeed, there is no parameter

that enables users to explicitly specify the number of image pyramids to be used. Instead, the parameter

coarse grain limitcan be used to control the size of the features to be used during recognition and,

therefore, the depth of the hierarchical search, which has a similar meaning as, but cannot be equated

with, the number of pyramid levels. To indicate the quality of the match, PatMaxR© computes a score

value between 0.0 and 1.0. In general, there are two different methods for computing the score value,

thus the user can tell PatMaxR© whether to ignore clutter when computing the score or not. For our

evaluation experiments we decided not to ignore the clutter, because this is the default parameter setting.

Thus, the score of object instances is computed including object occlusion as well as extraneous features

in the image.

2.5 Shape-Based Matching

In this section the principle of our novel similarity measure is briefly explained. A detailed description

can be found in [Steger, 2001].

Here, the model consists of a set of pointspi = (xi, yi)
T with a corresponding direction vector

di = (ti, ui)
T , i = 1, . . . , n. The direction vectors can be generated by a number of different image

processing operations, e.g., edge, line, or corner extraction.
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The search image can be transformed into a representation in which a direction vectorex,y =
(vx,y, wx,y)T is obtained for each image point(x, y). In the matching process, a transformed model

must be compared to the image at a particular location by a similarity measure. We suggest to sum the

normalized dot product of the direction vectors of the transformed model and the search image over all

points of the model to compute a matching score at a particular pointq = (x, y)T of the image. If the

model is generated by edge or line filtering, and the image is preprocessed in the same manner, this

similarity measure fulfills the requirements of robustness to occlusion and clutter. A similarity measure

with a well defined range of values is desirable if a user specifies a threshold on the similarity measure

to determine whether the model is present in the image. The following similarity measure achieves this

goal:

s =
1
n

n∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖

(6)

=
1
n

n∑
i=1

t′ivx+x′
i,y+y′

i
+ u′

iwx+x′
i,y+y′

i√
t′2i + u′2

i ·
√

v2
x+x′

i,y+y′
i
+ w2

x+x′
i,y+y′

i

.

Because of the normalization of the direction vectors, this similarity measure is invariant to arbitrary

illumination changes. What makes this measure robust against occlusion and clutter is the fact that if a

feature is missing, either in the model or in the image, noise will lead to random direction vectors, which,

on average, will contribute nothing to the sum.

The normalized similarity measure (6) has the property that it returns a number smaller than 1 as the

score of a potential match. A score of 1 indicates a perfect match between the model and the image.

Furthermore, the score roughly corresponds to the portion of the model that is visible in the image.

A desirable feature of this similarity measure is that it does not need to be evaluated completely

when object recognition is based on a thresholdsmin for the similarity measure that a potential match

must achieve. Letsj denote the partial sum of the dot products up to thej-th element of the model:

sj =
1
n

j∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖

. (7)

Obviously, all the remaining terms of the sum are all≤ 1. Therefore, the partial score can never achieve

the required scoresmin if sj < smin − 1+ j/n, and hence the evaluation of the sum can be discontinued

after thej-th element whenever this condition is fulfilled. This criterion speeds up the recognition process

considerably.

Nevertheless, further speed-ups are highly desirable. Another criterion is to require that all partial

sums have a score better thansmin, i.e.,sj ≥ smin. When this criterion is used, the search will be very

fast, but it can no longer be ensured that the object recognition finds the correct instances of the model

because if missing parts of the model are checked first, the partial score will be below the required score.
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To speed up the recognition process with a very low probability of not finding the object although it is

visible in the image, the following heuristic can be used: the first part of the model points is examined

with a relatively safe stopping criterion, while the remaining part of the model points are examined with

the hard thresholdsmin. The user can specify what fraction of the model points is examined with the hard

threshold with a parameterg, which will be calledgreedinessbelow. If g = 1, all points are examined

with the hard threshold, while forg = 0, all points are examined with the safe stopping criterion. With

this, the evaluation of the partial sums is stopped wheneversj < min(smin − 1 + fj/n, smin), where

f = (1− gsmin)/(1− smin).

Our current implementation is able to recognize objects under similarity transformations. To speed

up the recognition process, the model is generated in multiple resolution levels, which are constructed by

building an image pyramid from the original image. Because of runtime considerations the Sobel filter

is used for feature extraction.

In the online phase an image pyramid is constructed for the search image. For each level of the pyra-

mid, the same filtering operation that was used to generate the model is applied to the search image. This

returns a direction vector for each image point. Note that the image is not segmented, i.e., thresholding

or other operations are not performed. This results in true robustness to illumination changes.

To identify potential matches, an exhaustive search is performed for the top level of the pyramid.

With the termination criteria using the thresholdsmin, this seemingly brute-force strategy actually be-

comes extremely efficient. After the potential matches have been identified, they are tracked through the

resolution hierarchy until they are found at the lowest level of the image pyramid.

Once the object has been recognized on the lowest level of the image pyramid, its position, rotation,

and scale are extracted to a resolution better than the discretization of the search space by fitting a second

order polynomial (in the four pose variables horizontal translation, vertical translation, rotation, and

scale) to the similarity measure values in a 3× 3× 3× 3 neighborhood around the maximum score.

2.6 Modified Hough Transform

One weakness of the Generalized Hough Transform (GHT) [Ballard, 1981] algorithm is the — in general

— huge parameter space. This requires large amounts of memory to store the accumulator array as well

as high computational costs in the online phase caused by the initialization of the array, the incremen-

tation, and the search for maxima after the incrementation step. In this section we introduce our novel

approach which is able to recognize objects under translation and rotation: A hierarchical search strategy

in combination with an effective limitation of the search space is introduced. Further details can be found

in [Ulrich, 2001], [Ulrich et al., 2001a], and [Ulrich et al., 2001b] .

To reduce the size of the accumulator array and to speed up the online phase both the model and the

search image are treated in a hierarchical manner using image pyramids. To build theR-table the edges

and the corresponding gradient directions are computed using the Sobel filter.
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In the online phase the recognition process starts on the top pyramid level without any `a priori infor-

mation about the searched transformation parametersx, y andθ using the conventional GHT. The cells

in the accumulator array that are local maxima and exceed a certain threshold are stored and used to

initialize approximate values on the lower levels.

At lower levels approximate values̃x, ỹ, andθ̃ are known from a higher level. To restrict the edge

extraction region and to minimize the incrementation effort, only those pixels in the search image that lie

beneath theblurred regionare taken into account. The blurred region is defined by dilating and rotating

the shape, i.e., the edge regions, corresponding to the error of the approximate values and translating it

to the approximate parameter values. The blurred regions are calculated for every quantized orientation

in the offline phase and stored together with the model. By this, the size of the accumulator array can

be narrowed to a size corresponding to the uncertainties of the `a priori parameters, which decreases the

memory amount drastically.

The principle of the conventional GHT is shown in Figure 1. The `a priori information is displayed

as a dark gray box representing the maximum error of the approximate translation values from the next

higher level. The edge pixelspr
1, pr

2, andpr
3 have identical gradient directions. Thus, if any of these edge

pixels is processed in the online phase of the conventional GHT each of the three vectorsr1, r2, and

r3 is added and the corresponding three cells are incremented, which is inefficient. Therefore, after the

edge extraction another improvement is utilized, which greatly improves the efficiency: Already in the

offline phase the information about the position of the edge pixels relative to the centroid is calculated

and stored in the model. This is done by overlaying a grid structure over the rotated reference image

and splitting the image into tiles (Fig. 2). In the online phase the current tile is calculated using the

approximate translation parameters and the position of the current edge pixel. Only the vectors in the

respective tile with the appropriate gradient direction are used to calculate the incrementation cells.

Furthermore, the inherent quantization problems of the GHT are solved by smoothing the accumula-

tor array and establishing overlapping gradient intervals in theR-table.

To refine the parameters of position and orientation we use the three dimensional equivalent approach

as for the shape-based matching described in section 2.5. To evaluate the quality of a match, a score value

is computed as the peak height in the accumulator array divided by the number of model points.

2.7 Shape-Based Matching Using Least-Squares Adjustment

To improve the accuracy of the transformation parameters, we developed a method that minimizes the

distance between tangents of the model shape and potential edge pixels in the search image using a least-

squares adjustment (see also [Wallack and Manocha, 1998]). Approximate transformation parameters

are assumed to be known, which can be obtained by any preceding object recognition method that uses

the edge position and orientation as features, e.g., the shape-based matching or the modified Hough

transform.
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Figure 2: Taking advantage of the `a priori in-

formation using a tile structure. For each oc-

cupied tile (bold border) a separateR-table is

generated.

The tangents of the model shape are defined by the edge pointspi = (xi, yi)T in the reference

image and the corresponding normalized gradient direction vectorsdi = (ti, ui)
T , ||di|| = 1, i =

1, . . . , n, which are calculated as described in section 2.5. The potential edge pixelsqi = (vj , wj)T ,

j = 1, . . . ,m in the search image are obtained by a non-maximum suppression of the edge amplitude

in gradient direction. Thus, a segmentation of the search image can be avoided. A subsequent subpixel

refinement using an extrapolation from a3 × 3 neighborhood is applied to the model points as well

as to the edge pixels in the search image. The model points are transformed using the approximate

transformation parameters. For each transformed model point the corresponding edge pixel in the search

image is chosen to be the potential edge pixel with the smallest euclidian distance. This is done in a

robust computation, such that only the edge pixels in the search image perpendicular to the local tangent

direction are taken into account and corresponding edge pixels having a distance larger than a statistically

computed threshold are ignored.

Finally, the Hessian normal form is used to compute the distance between each tangent of the model

shape and the corresponding pixel in the search image. Thus, we minimize the squared distance, which

can be expressed by

χ2(a) =
n∑

i=1

[ti(vi(a) − xi) + ui(wi(a) − yi)]2 → min, (8)

wherea represents the unknown transformation parameters andvi(a), wi(a) the transformed edge pix-

els of the search image. The approximate transformation parametersaapprox are used to initialize the
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unknowns. If this approximation is already good enough the solutionamin can be found in a single step

(see [Press et al., 1992]):

amin = aapprox + D−1 · [−∇χ2(aapprox)]. (9)

Here,∇χ2 andD are the gradient and the Hessian matrix ofχ2 evaluated ataapprox. This means solving

a linear equation system, which is, e.g., of size4 × 4 if similarity transformations are considered, and,

therefore, can be computed efficiently.

We implemented the least-squares adjustment as an extension of the shape-based matching, which

returns the requested approximate values accurately enough.

3 Evaluation

3.1 Evaluation Criteria

We use three main criteria to evaluate the performance of the seven object recognition methods and to

build a common basis that facilitates an objective comparison.

The first criterion to be considered is therobustnessof the approach. This includes the robustness

against occlusions, which often occur in industrial applications, e.g., caused by overlapping objects on

the assembly line or defects of the objects to be inspected. Non-linear as well as local illumination

changes are also crucial situations, which cannot be avoided in many applications over the entire field

of view. Therefore, the robustness against arbitrary illumination changes is also examined. A multitude

of images were taken to simulate different overlapping and illumination situations (see section 3.2). We

measure the robustness using the recognition rate, which is defined as the number of images in which the

object was correctly recognized divided by the total number of images.

The second criterion is theaccuracyof the methods. Most applications need the exact transformation

parameters of the object as input for further investigations like precise metric measurements. In the

area of quality control, in addition, the object in the search image must be precisely aligned with the

transformed reference image to ensure a reliable recognition of defects or other variations that influence

certain quality criteria, e.g., by subtracting the gray values of both images. We determine the subpixel

accuracy by comparing the exact (known) position and orientation of the object with returned parameters

of the different candidates.

Thecomputation timerepresents the third evaluation criterion. Despite the increasing computation

power of modern microprocessors, efficient and fast algorithms are more important than ever. This is

particularly true in the field of object recognition, where a multitude of applications enforce real time

computation. Indeed, it is very hard to compare different recognition methods using this criterion because

the computation time strongly depends on the individual implementation of the recognition methods.
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Figure 3: An IC is used as the object to be recog-

nized.

Figure 4: The model is created from the print of

the IC using a rectangular ROI.

Nevertheless, we tried to find parameter constellations (see section 3.2) for each of the investigated

approaches that at least allow a qualitative comparison.

Since the Hausdorff distance does not return the object position in subpixel accuracy and in addition

does not use image pyramids resulting in unreasonably long recognition times, the criteria of accuracy

and computation time are only applied to the six remaining candidates. The least-squares adjustment

is implemented as a subsequent refinement step in combination with the shape-based matching. There-

fore, only the accuracy and the recognition time of the least-squares adjustment are analyzed, since the

robustness is not affected and hence is the same as the robustness of the underlying recognition approach.

3.2 Experimental Set-Up

In this section the experimental set-up for the evaluation is explained in detail. We chose an IC, which

is shown in Figure 3, as the object to be found in the subsequent experiments. Only the part within the

bounding box of the print on the IC formes the ROI, from which the models of the different recognition

approaches are created (see Figure 4). For the recognition methods that segment edges during model

creation (Hausdorff distance, shape-based matching, modified Hough transform, least-squares adjust-

ment) the threshold for the minimum edge amplitude in the reference image was set to 30 during all our

experiments. The images we used for the evaluation are 8 bit gray scale of size 652× 494 pixels. For all

recognition methods using image pyramids, four pyramid levels were used to speed up the search, which

we found to be the optimum number for our specific object. When using PatMaxR©, there is no parameter

that allows to explicitly specify the number of image pyramids to use. Instead, the parametercoarse

grain limit can be used to control the depth of the hierarchical search, which has a similar meaning but

can not be equated with the number of pyramid levels. Since this parameter can be set automatically, we

assumed the automatically determined value as the optimum one and did not use a manual setting.
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Figure 5: Six of the 500 images that were used to test the robustness against occlusions.

3.2.1 Robustness

To apply the first criterion of robustness and determine the recognition rate two image sequences were

taken, one for testing the robustness against occlusions the other for testing the sensibility against illu-

mination changes. We defined the recognition rate as the number of images, in which the object was

recognized at the correct position divided by the total number of images. Because the robustness of the

least-squares adjustment is the same as that of the underlying approach, i.e., the shape-based matching

in our case, the least-squares adjustment was not included in this test.

The first sequence contains 500 images of the IC, which was occluded to various degrees with various

objects, so that in addition to occlusion, clutter of various degrees was created in the image. Figure 5

shows six of the 500 images that we used to test the robustness against occlusion. For the approaches

that segment edges in the search image (modified Hough transform and Hausdorff distance) the minimum

edge amplitude in the search image was set to 30, i.e., to the same value as in the reference image.

The size of the bounding box is 180× 120 pixels at the lowest pyramid level, i.e., at original image

resolution, containing 2127 edge points extracted by the Sobel filter. In addition to the recognition

rate, the correlation between the actual occlusion and the returned score values are examined, because

the correlation between the visibility of the object and the returned score value is also an indicator for

robustness. If, for example, only half of the object is visible in the image then, intuitively, also the score

should be 50%, i.e., we expect a very high correlation in the ideal case. For this purpose, an effort was
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Figure 6: Three of the 200 images that were used to test the robustness against arbitrary illumination

changes.

made to keep the IC in exactly the same position in the image in order to be able to measure the degree

of occlusion. Unfortunately, the IC moved very slightly (by less than one pixel) during the acquisition

of the images. The true amount of occlusion was determined by extracting edges from the images and

intersecting the edge region with the edges within the ROI in the reference image. Since the objects that

occlude the IC generate clutter edges, this actually underestimates the occlusion.

The transformation class was restricted to translations, to reduce the time required to execute the

experiment. However, the allowable range of the translation parameters was not restricted, i.e., the

object is searched in the entire image. For the normalized cross correlation, the Hausdorff distance,

PatMaxR©, the shape-based matching approach, and the modified Hough transform, different values for

the parameter of the minimum score were applied. The minimum score can be chosen for all those

approaches and specifies the score a match must at least have to be interpreted as a found object instance.

The forward fraction of the Hausdorff distance was interpreted as score value. Initial tests with the

forward and reverse fractions set to 30% resulted in run times of more than three hours per image.

Therefore, the reverse fraction was set to 50% and the forward fraction was successively increased from

50% to 90% using an increment of 10%. The parameter for the maximum forward and reverse distance

were set to 1. For the other three approaches the minimum score was varied from 10 to 90 percent.

In the case of the sum of the absolute differences the maximum error instead of the minimum score

was varied. We limited this range to a maximum error of 30. Tolerating higher values was also too

computationally expensive. As explained in section 2.5 the recognition rate of the shape-based matching

approach depends on the parameter greediness. Therefore, we additionally varied this parameter in the

range of 0 to 1 using increments of 0.2.

To test the robustness against arbitrary illumination changes, a second sequence of images of the

IC was taken, which includes various illumination situations. Three example images are displayed in

Figure 6. Due to a smaller distance between the IC and the camera, the ROI is now255 × 140 pixels

containing 3381 model points on the lowest pyramid level. The parameter settings for the six methods

is equivalent to the settings for testing the robustness against occlusions. Since the modified Hough
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Figure 7: To test the accuracy, the IC was mounted on a precisexyθ-stage, which can be shifted with an

accuracy of 1µm and can be rotated with an accuracy of 0.7’ (0.011667◦).

transform segments the search image, additionally the threshold for the minimum edge amplitude in the

online phase is varied from 5 to 30 using an increment of 5.

3.2.2 Accuracy

In this section the experimental set-up that we used to determine the accuracy of the algorithms, is

explained. This criterion is not applied to the Hausdorff distance, because subpixel accuracy is not

achieved by the used implementation. Generally, it seems to be very difficult to compute a refinement

of the returned parameters directly based on the forward or reverse fraction. Since PatMaxR© and the

shape-based matching are the only candidates that are able to recognize scaled objects, only the position

and orientation accuracy of the six approaches were tested.

To test the accuracy, the IC was mounted onto a table that can be shifted with an accuracy of 1µm

and can be rotated with an accuracy of 0.7’ (0.011667◦). Figure 7 illustrates the experimental set-up.

Three image sequences were acquired: In the first sequence, the IC was shifted in 10µm increments

to the left in the horizontal direction, which resulted in shifts of about 1/7 pixel in the image. A total

of 40 shifts were performed, while 10 images were taken for each position of the object. The IC was

not occluded in this experiment and the illumination was not changed. In the second sequence, the IC

was shifted in the vertical direction with upward movement in the same way. However, a total of 50

shifts were performed. The intention of the third sequence was to test the accuracy of the returned object

orientation. For this purpose, the IC was rotated 50 times for a total of 5.83◦. Again, 10 images were

taken in every orientation.

During all accuracy tests, euclidean motion was used as transformation class. The search angle for

all approaches was restricted to the range of [-30◦;+30◦], whereas the range of translation parameters

again was not restricted. The increment of the quantized orientation step was set to 1◦, which results

in the models containing 61 rotated instances of the template image at the lowest pyramid level. Since

no occlusions were present the threshold for the minimum score could be uniformly set to 80% for all
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approaches. For the maximum error of the sum of absolute differences we used a value of 25. Lower

values resulted in missed objects, if the IC was rotated in the middle between two quantized orientations,

e.g. 0.5◦, 1.5◦, etc., whereas higher values resulted in expensive computations. In shape-based matching

the greediness parameter was set to 0.5, which represents a good compromise between recognition rate

and computation time.

3.2.3 Computational Time

In order to apply the third criterion, exactly the same configuration was employed as it was used for

the accuracy test described in section 3.2.2. The computation time of the recognition processes was

measured on a 400 MHz Pentium II for each image of the three sequences and for each recognition

method (excluding again the Hausdorff distance for the reason mentioned above). In order to assess the

correlation between restriction of parameter space and computation time, additionally, a second run was

performed without restricting the angle interval.

In this context it should be noted that the modified Hough transform is the only candidate that is able

to recognize the object, even if it partially lies outside the search image. The translation range of the

other approaches is restricted automatically to the positions at which the object lies completely in the

search image. Particularly in the case of large objects this results in an unfair comparison between the

Hough transform and the other candidates when computation time is considered.

3.3 Results

In this section we present the results of the experiments described in section 3.2. Several plots illustrate

the performance of the examined recognition methods. The description and the analysis of the plots are

structured as in the previous section, i.e., first the results of the robustness, then the accuracy, and finally

the computation time are presented.

3.3.1 Robustness

Occlusion. First, the sequence of the occluded IC was tested. Figure 8 shows the recognition rate of

the shape-based matching approach depending on the minimum score and the greediness parameter. As

expected, the number of correctly recognized objects decreases with increasing minimum score, i.e.,

the higher the degree of occlusion the smaller the parameter of the minimum score must be chosen to

find the object. What also can be seen from this figure is that apparently the greediness parameter must

be adjusted carefully when dealing with occluded objects: For the given minimum score of 50% the

recognition rate varies in the range between 48% and 82%, corresponding to the two extreme greediness

values of 1 and 0. On the other hand, decreasing the greediness parameter from 1 to 0.8 already improves

the recognition rate to 64%. When we look at the plotted line corresponding to the greediness value 0, we

16



10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Shape Based Matching

Minimum Score [%]

R
ec

og
ni

tio
n 

R
at

e 
[%

]

Greediness = 0.0
Greediness = 0.2
Greediness = 0.4
Greediness = 0.6
Greediness = 0.8
Greediness = 1.0

Figure 8: Recognition rate in the case of occlusions of shape-based matching using different values for

the parameter greediness. The “greedier” the search the more matches are missed.
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Figure 9: The recognition rate of different approaches indicates the robustness against occlusions. This

figure shows the recognition rate (a) of five candidates depending on the minimum score and (b) of the

approach using the sum of the absolute differences depending on the maximum error.

can see that if the minimum score was chosen small enough the object was found in almost all images.

The correlation between the score and the visibility of the object is studied below.

A complete comparison of all approaches concerning the robustness against occlusion is shown in

Figure 9. The recognition rate, which is an indicator for the robustness, is plotted depending on the min-

imum score or the maximum error (see section 3.2.1). Here, the superiority of our two novel approaches

to the standard approaches becomes clear. Note that the robustness of the modified Hough transform

hardly differs from the robustness achieved by the shape-based matching when using a greediness of
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0. Looking at the other approaches, only PatMaxR© reaches a comparable result, which is, however,

slightly inferior in all cases. Furthermore, when using a restricted parameter space, which is limited to

only translations as described in section 3.2, the recognition rate of PatMaxR© was up to 14% lower as

when using a narrow angle tolerance interval of [-5◦;+5◦]. To avoid that this peculiarity results in an

unfavorable comparison for PatMaxR© we decided to take the angle tolerance interval into account when

using PatMaxR©.

The recognition rate of the normalized cross correlation does not reach 50% at all, even if the mini-

mum score is chosen small. The approach using the sum of absolute differences shows a similar behavior.

Although the expectation is fulfilled that the robustness increases when the maximum error is set to a

higher value, even relatively high values for the mean maximum error (e.g., 30) only lead to a small

recognition rate of about 35%. A further increase of the maximum error is not reasonable because of two

reasons: first, the computation time would make the algorithm unsuitable for practical use and second,

this would lead to false positives, i.e., an occluded instance could not be distinguished from clutter in the

search image.

Figure 10 displays a plot of the returned score value against the estimated visibility of the object,

i.e., the correlation between the visibility of the object and the returned score value is visualized: For

the sum of absolute differences again the error is plotted instead of the score. The instances in which

the model was not found are denoted by a score or error of 0, i.e., they lie on thex axis of the plot.

For most approaches the minimum score was set to 30%, i.e., in those images in which the object has a

visibility of more than 30%, it should be found by the recognition method. For the Hausdorff distance

a minimum forward fraction of 50% was used and the sum of absolute differences was limited to a

maximum error of 25. What can be seen from the plots is that the error is negatively correlated with the

visibility. Nevertheless the points are widely spread and not close to the ideal virtual line with negative

gradient. In addition, despite of a very high degree of visibility many objects were not recognized. One

possible reason for this behavior could be that in some images the clutter object does not occlude the IC

yet, but casts its shadow onto the IC, which strongly influences this metric.

In the plot of the Hausdorff distance the wrong matches either have a forward fraction of 0% or close

to 50%, due to some false positives. Here, a noticeable positive correlation can be observed, but several

objects with a visibility of far beyond 50% could not be recognized. This explains the lower recognition

rate in comparison to our approaches, which was mentioned above.

The normalized cross correlation also shows positive correlation but similar to the sum of absolute

differences the points in the plot are widely spread and many objects with high visibility were not recog-

nized.

In contrast, the plots of our new approaches show a point distribution that is much closer to the ideal:

The positive correlation is evident and the points lie close to a fitted line, the gradient of which is close to

1. In addition, objects with high visibility are recognized with a high probability. Also PatMaxR© results
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Figure 10: Extracted scores plotted against the visibility of the object. For the approach using the sum

of absolute differences the error is plotted instead of the score.

in a nearly ideal point distribution. Nevertheless, in some occlusion cases the object was not found even

though the visibility was significantly higher than 30%.

Another very interesting plot is shown in Figure 11, in which the position error of all approaches

under the stringent condition of occlusion is described. Here, also the results of the least-squares adjust-

ment are shown, because this method affects the returned object position. The reason why this analysis

is shown in this section instead of section 3.3.2 is that robustness against occlusion not only means to

recognize the object at all, but to find it at the correct position, i.e., Figure 11 helps to visualize false pos-

itives. It can be seen that the IC was accidentally shifted twice. The position errors are all very close to

the three cluster centers except for the Hausdorff distance and PatMaxR©, for which in some instances the

best match was more than 30 pixels and 3 pixels, respectively, from the true location. Apparently, these

two methods seem to be susceptible to clutter and tend to return false positives. All other methods did not

return even one false positive. Some of the larger errors in they coordinate result from refraction effects

caused by the transparent ruler that was used in some images to occlude the IC. By the way, comparing

the plot concerning the least-squares adjustment to that of the shape-based matching the advantage of the

adjustment becomes clear: the points are much closer to the three cluster centers. This improvement of

the position accuracy is analyzed in section 3.3.2 in more detail.
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Figure 11: Position errors of the approaches using the 500 images of the occluded IC. The position error

is an indicator for robustness because false positives are visualized.

Illumination. In the following the robustness against arbitrary illumination changes is analyzed. In

Figure 12(a) the recognition rate of the shape-based matching approach is plotted using different values

for the greediness parameter, as in the case of occlusion. Additionally, the robustness of the modified

Hough transform depending on the minimum edge amplitude in the search image is also analyzed (Figure

12(b) ).

Here, the effect of different greediness values is smaller than in the case of occlusion. Disregarding

the result obtained with greediness set to 1, the discrepancy is smaller than 10%. In contrast, the recogni-

tion rate of the modified Hough transform strongly depends on the chosen threshold for edge extraction

in the search image. The higher the minimum edge amplitude the more edge pixels were missed, because

dimming the light as well as stronger ambient illumination reduces the contrast. Thus, this effect is com-

parable to the effect of higher occlusion. Therefore, a high recognition rate can be obtained by setting the

minimum score to a lower value or by choosing a lower threshold for the edge amplitudes. For example,

a minimum score of 50% and an edge threshold of 10 leads to a recognition rate of 84%. Nevertheless,

the true invariance of the shape-based matching approach could not be reached by the modified Hough

transform.

Figure 13 shows a comparison of the robustness of all approaches. Again, the sum of absolute

differences shows low recognition rates: in comparison to the robustness against occlusion the overall

recognition rate even decreases. Now, the best recognition rate that could be obtained using a maximum

error of 30 was only 11%. By comparing this value to the result obtained for a maximum error of 20,
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Figure 12: Recognition rate in the case of illumination changes of (a) the shape-based matching using

different values for the parameter greediness and (b) the modified Hough transform using different values

for the minimum edge amplitude in the search image.

which is also 11%, it is obvious that even by further increasing the maximum error no improvement can

be reached. In comparison, the recognition rate of the normalized cross correlation is substantially better.

This can be attributed to its normalization, which compensates at least global illumination changes. The

result obtained by the Hausdorff distance is also superior to that of the sum of absolute differences,

especially in the case of large values for the minimum score it shows good results, but could not reach the

performance of the shape-based matching approach by far. If the minimum score is set low enough, the

recognition rate of the modified Hough transform surpasses that of the shape-based matching, however,

for higher values its recognition rate rapidly falls. Here, also PatMaxR© shows very good results: the

recognition rate is nearly constant when increasing the minimum score from 10% to 60% but also drops

down during further increase.

3.3.2 Accuracy

Since the Hausdorff distance does not return the object position in subpixel accuracy, only the accuracy

of the six remaining candidates are evaluated in this section. To assess the accuracy of the extracted

model position and orientation a straight line was fitted to the mean extracted coordinates of position

and orientation. This is legitimated by the linear variation of the position and orientation of the IC in the

world as described in section 3.2. The residual errors of the line fit, shown in the Figures 14 – 16, are an

extremely good indication of the achievable accuracy.

As can be seen from the Figures 14 and 15 the errors inx approximately have the same magni-

tude as iny. The position accuracy of the normalized cross correlation, PatMaxR©, the modified Hough
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Figure 13: The recognition rate of different approaches indicates the robustness against arbitrary illumi-

nation changes. This figure shows the recognition rate (a) of five candidates depending on the minimum

score and (b) of the approach using the sum of the absolute differences depending on the maximum error.
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Figure 14: Position accuracy as the difference between the actualx coordinate of the IC and thex

coordinate returned by the recognition approach while shifting the chip successively by1/7 pixel to the

left.

transform, the shape-based matching and the least-squares adjustment and are very similar. The corre-

sponding errors are in most cases smaller than 1/20 pixel. The two conspicuous peaks in the error plot

of Figure 14 occur for all three approaches with similar magnitude. Therefore, and because of the nearly

identical lines, it is probable that the chip was not shifted exactly and thus, the error must be attributed

to a deficient acquisition. However, the high and oscillating errors inx andy of about 1/10 pixel of the
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Figure 15: Position accuracy as the difference between the actualy coordinate of the IC and they coor-

dinate returned by the recognition approach while shifting the chip successively by1/7 pixel upwards.
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Figure 16: Orientation accuracy as the difference between the actual object orientation of the IC and

the returned angle by the recognition approach while rotating the chip successively by approx.1/9◦

counterclockwise.

approach using the sum of absolute differences can not be attributed to this. This is rather due to subpixel

translations that influence the gray values especially in high contrast areas of the image.

Figure 16 shows the corresponding errors in orientation. Here, the least-squares adjustment and

PatMaxR© are superior to all other candidates reaching maximum errors of 1/50◦ and 1/100◦ in this

example. In comparison, when looking at the result of the shape based matching, the improvement of the

least-squares adjustment is evident: the maximum error is reduced to 1/50◦ compared to the result of the
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Shifted IC Rotated IC

[-30◦;+30◦ ] [0◦;+360◦] ∆ [-30◦;+30◦ ] [0◦;+360◦] ∆
Recognition Method

[ms] [ms] [%] [ms] [ms] [%]

Shape-Based Matching 57 126 121 50 100 100

Least-Squares Adjustment 65 133 105 60 110 83

Modified Hough Transform 72 112 56 62 80 29

PatMaxR© 55 88 60 80 193 141

Normalized Cross Correlation 132 281 113 294 373 27

Sum of Absolute Differences 176 428 143 254 501 97

Table 1: Mean computation times of the different approaches on a 400 MHz Pentium II. Additionally,

the time increase∆ from the restricted to the unrestricted angle interval is printed in percent.

shape-based matching without least-squares adjustment, which was about 1/16◦. The error magnitude of

the other three approaches is higher 1/6◦ (10’) in this example.

3.3.3 Computation Time

The last criterion that was applied is the computation time of the recognition approaches. In Table 1

the mean recognition times of all approaches using the sequence with the shifted IC as well as using

the sequence with the rotated IC are listed. Additionally, the time increase∆ from the restricted to the

unrestricted angle interval is printed in percent.

Figure 17 shows the mean recognition time of the six approaches for each shift of the IC. In Figure 17

(a) the angle interval was restricted to [-30◦;+30◦]. In this respect the shape-based matching approach,

the least-squares adjustment, the modified Hough transform and PatMaxR© are substantially faster than

existing traditional approaches using the normalized cross correlation or the sum of absolute differences.

The results when using an unrestricted angle interval are shown in Figure 17 (b). Now, the modified

Hough transform is slightly faster than the shape-based matching approach, which indicates an advantage

of the modified Hough transform over the shape-based matching if the transformation space increases.

This assumption is also supported when looking at the percental time increase of the modified Hough

transform: The computation time merely increases by 56%, which is the smallest value in this test. Also

PatMaxR© shows only a small increase, whereas the computation time of the normalized cross correlation

and the sum of absolute differences increase more dramatically.

In this example the computation times of our new approaches are only 0.2 to 0.5 times as high as

those of the traditional methods but about 1.0 to 1.5 times as high as that of PatMaxR©.

For the most methods, a similar behavior is obtained when searching for the rotated IC. In Figure 18

the mean recognition time of the six approaches for each orientation of the IC is shown. What should be
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Figure 17: Computation time of the different approaches on a 400 MHz Pentium II using the shifted IC

(a) with angle restriction to [-30◦;+30◦] and (b) without angle restriction.
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Figure 18: Computation time of the different approaches on a 400 MHz Pentium II using the rotated IC

(a) with angle restriction to [-30◦;+30◦] and (b) without angle restriction.

noted is that the more the IC is rotated relatively to the reference orientation the longer the computation

time of the normalized cross correlation. Obviously, the implementation of [Matrox, 2001] does not

scan the whole orientation range at the highest pyramid level before the matches are traced through the

pyramid but starts with a narrow angle range close to the reference orientation. The adjacent orientations

are not scanned until no matches could be found in the angle range close to the reference orientation.

Thus, the computation time of the normalized cross correlation shown in Figures 17 and 18 is not directly
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comparable to the other approaches, because the orientation range of [-30◦;+30◦] or [0◦;+360◦] is not

really scanned, i.e., a comparable computation time would be still higher. Because of this implementation

property, a fair comparison regarding the computation time can be achieved by rotating the object for all

orientations within the entire angle range and computing the average recognition time of the normalized

cross correlation. The consequence is, that the computation of the normalized cross correlation is not

faster, as we would suppose when we look at the Figures and at Table 1, but it is approximately 4 times

slower than the sum of absolute differences as we would expect it when looking at the corresponding

formulas of the two approaches.

Also here, the modified Hough transform seems to be the method that is most suitable when dealing

with large parameter spaces because of its small time increase — in this case — of only 29%. To get the

effective computation time of the least-squares adjustment we have to subtract the computation time of

the shape-based matching. The difference is in the range of 7 to 10 milliseconds and does not depend

on the size of the parameter space. Therefore, the larger the parameter space the less the influence of

this constant part, which is the reason for the smaller∆-values in Table 1 of the least-squares adjustment

in contrast to the shape-based matching. By all means, it should be pointed out that the computation

time of PatMaxR© in this example is much slower than in the example above. Thus, in this case our

new approaches are not only dramatically faster than the traditional methods but also considerably faster

than PatMaxR©. The reason for the totally different computation times of PatMaxR© in the two example

sequences is the automatic computation of the coarse grain limit. During the first sequence using the

shifted IC the grain limit was automatically set to 3.72 and during the second sequence using the rotated

IC the grain limit was automatically set to only 2.92. There is no obvious reason for this difference,

because the object was the same in both cases. Experiments have shown that the automatic computation

of the grain limit may result in a totally different value if the region of interest is shifted by just 1 pixel

without changing the number of edge points within the region.

4 Conclusions

We presented an extensive performance evaluation of seven object recognition methods. For this pur-

pose, the normalized cross correlation, the sum of absolute differences and the Hausdorff distance as

three standard similarity measures in industrial applications were compared to PatMaxR© — an object

recognition tool developed by [Cognex, 2000] — and two novel recognition methods that we have de-

veloped with the aim to fulfill increasing industrial demands. Additionally, a new method for refining

the object’s pose based on a least-squares adjustment was included in our analysis. We showed that our

new approaches have considerable advantages and are substantially superior to the existing traditional

methods especially in the field of robustness and recognition time. Even in comparison to PatMaxR©

particularly the shape based matching in combination with the least-squares adjustment shows very good
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results. In contrast, we exposed some inconsistencies when using PatMaxR©: restricting the parameter

space to translations causes the recognition rate to drop down dramatically. The automatic setting of

the grain limits is problematical since significantly different results are obtained using the same object

and, although a high value for the grain limits leads to a fast computation it also results in a high risk of

returning false positives. In contrast, a low value means higher robustness but slow computation.

In most cases the shape-based matching approach and the modified Hough transform show equivalent

behavior. The shape-based matching approach should be preferred when dealing with intense illumina-

tion changes and situations where it is important to know the exact orientation of the object. In contrast,

the modified Hough transform is better suited when either the dimensionality or the extension of the

parameter space increases and the computation time is a critical factor.

The breakdown points of the normalized cross correlation are its low robustness against occlu-

sions/clutter and non-linear illumination changes. The relatively slow computation is another factor

that limits its applicability. The sum of absolute differences can be computed faster but has the same

breakdown points as normalized cross correlation. Additionally, lower accuracies can be obtained. As a

breakdown point of the Hausdorff distance its trend to return false positives should be mentioned, which

often occur in the presence of clutter.

Aside from these conclusions, it should be pointed out that some of the results might change if we

chose, for example, other implementations of the approaches, other parameter constellations or other

image sequences. Therefore, our comparison is more of a qualitative nature rather than of a quantitative

one. Nevertheless, our results are very objective and help potential users to find the optimum approach

for their specific application. To facilitate an extended comparison including other recognition methods,

interested parties are requested to send an e-mail to the authors in order to get the sequences that we used

for the evaluation.
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