Hand-Eye Calibration of SCARA Robots

Markus Ulrich
MVTec Software GmbH
Neherstr. 1, 81675 München
www.mvtec.com
Telephone: +49 89 4576950
Email: ulrich@mvtec.com

Andreas Heider
MVTec Software GmbH
Neherstr. 1, 81675 München
www.mvtec.com
Telephone: +49 89 4576950
Email: andreas@heider.io

Carsten Steger
MVTec Software GmbH
Neherstr. 1, 81675 München
www.mvtec.com
Telephone: +49 89 4576950
Email: steger@mvtec.com

Abstract—In SCARA robots, which are often used in industrial applications, all joint axes are parallel, covering three degrees of freedom in translation and one degree of freedom in rotation. Therefore, conventional approaches for the hand-eye calibration of articulated robots cannot be used for SCARA robots. In this paper, we present a new linear method that is based on dual quaternions and extends the work of [1] for SCARA robots. To improve the accuracy, a subsequent is performed based on closing the chain of transformations [11]:

\[\text{tool} H_{\text{cal}} = \text{tool} H_{\text{base}} \text{base} H_{\text{cal}} \text{cam} H_{\text{cal}}. \]

I. INTRODUCTION

SCARA (Selectively Compliant Arm for Robotic Assembly) robots ([2], [3]) are used in many industrial applications. They differ from articulated (anthropomorphic) robots in that their movements are more restricted. The arm of an articulated robot typically has 6 rotary joints that cover 6 degrees of freedom (3 translations and 3 rotations). In contrast, SCARA robots have at least 2 parallel rotary joints and 1 parallel prismatic joint that cover only 4 degrees of freedom (3 translations and 1 rotation). Fig. 1 shows typical SCARA setups with 3 rotary joints: The camera can either be mounted on the robot’s end effector (tool) and is moved to different positions by it or it can be mounted stationary outside the robot. Compared to other robot types, SCARA robots offer faster and more precise performance. They are best suited for pick and place, packaging, and assembly applications, and are often preferred if only limited space is available.

We assume that the (moving or stationary) camera observes the workspace of the robot. Objects are detected and localized in the camera coordinate system. To be able to grasp the object, the object pose must be transformed into the base coordinate system of the robot. The process of determining the required transformation between the camera and the robot base coordinate systems for a stationary camera or between the camera and the robot tool coordinate system for a moving camera is called hand-eye calibration.

Fig. 1 shows the transformations that are involved in the hand-eye calibration process for the case of a stationary and a moving camera. \(\text{cam} H_{\text{cal}} \) is a rigid 3D transformation, represented by a \(4 \times 4 \) homogeneous transformation matrix, that transforms 3D points from the coordinate system \(\text{cal} \) into \(\text{cam} \). For stationary cameras, the fixed and unknown transformations are \(\text{cam} H_{\text{base}} \) and \(\text{tool} H_{\text{cal}} \). Note that although the calibration object is rigidly attached to the robot tool, in general the exact relative pose of the calibration object with respect to the robot tool cannot be gauged accurately by hand, and hence is unknown. The remaining two transformations \(\text{base} H_{\text{tool}} \) and \(\text{cam} H_{\text{cal}} \) of the closed chain of transformations depend on the robot pose and are known from the robot kinematics and from the algorithm that determines the pose of the calibration object in the camera coordinate system based on a calibration image. For moving cameras, the fixed and unknown transformations are \(\text{cam} H_{\text{tool}} \) and \(\text{base} H_{\text{cal}} \), while the known transformations are the same as for stationary cameras.

In the following, we will concentrate on the case of a stationary camera. The case of a moving camera can be treated in an equivalent way. We assume that the robot is calibrated, i.e., \(\text{base} H_{\text{tool}} \) is known accurately. Furthermore, we assume a calibrated camera, i.e., the interior camera parameters are known, and hence \(\text{cam} H_{\text{cal}} \) can be computed [4, chapter 3.9]. For simplicity reasons, we also assume w.l.o.g. that all joint axes of the SCARA robot are parallel to the \(z \) axis of the robot base and tool coordinate systems.\(^2\) This is in accordance with [3], where the \(z \) axis of base and tool coordinate system are parallel to the robot joint axes. The input for the calibration is obtained by moving the robot’s tool to \(n \) different poses and for each pose acquiring an image of the calibration object that is attached to the tool. Thus, the input consists of one pair of calibration poses \(\text{base} H_{\text{tool}} \) and \(\text{cam} H_{\text{cal}} \) for each of the \(n \) robot states.

It should be noted that the hand-eye calibration can also be performed without a calibration object by using approaches that are able to determine the 3D pose of arbitrary objects in a monocular image, e.g., [6] or [7]. Furthermore, instead of a camera, a 3D sensor can be used to observe the workspace of the robot. In this case, \(\text{cam} H_{\text{cal}} \) can be obtained by approaches that are able to determine the pose of objects in 3D sensor data, like [8], [9], or [10].

A. Hand-Eye Calibration of Articulated Robots

The hand-eye calibration of articulated robots is well understood. One of the most common problem formulations is based on closing the chain of transformations [11]:

\[\text{tool} H_{\text{cal}} = \text{tool} H_{\text{base}} \text{base} H_{\text{cal}} \text{cam} H_{\text{cal}}. \]

\(^2\)In [5], it is shown that if the joint axes are not aligned with the \(z \) axes, the coordinate system can simply be rotated to achieve alignment. Aligning the joint axes with the \(z \) axis has the advantage that the direction of the indeterminate translation (see below) is well known.
For each pair of calibration poses we set \(A_i = tool H_{base} \) and \(B_i = cam H_{cal} \), \(i = 1 \ldots n \). By setting the unknown poses to \(X = base \ H_{cam} \) and \(Y = tool H_{cal} \), we obtain \(Y = A_i X B_i \). The pose \(Y \) can be eliminated by combining two pairs of poses from two different states \(i \) and \(j \), resulting in \(A_i X B_i = A_j X B_j \). Rearranging yields \(A_i^{-1} A_j X = X B_j B_i^{-1} \). The relative poses \(A = A_j^{-1} A_i \) and \(B = B_j B_i^{-1} \) represent the motions between the poses \(i \) and \(j \) of the tool and of the calibration object, respectively. Finally, the hand-eye calibration must solve

\[AX = XB \]

with respect to the unknown \(X \). Simple linear algorithms typically handle rotation and translation separately [12], [13]. This results in rotational errors propagating and increasing translational errors. More advanced linear methods, typically based on screw theory (see section II-A for a short introduction to screw theory), avoid this by solving for rotation and translation simultaneously [1], [14], [15]. Based on the results of linear methods, nonlinear optimizations can be used to further improve accuracy [1], [15], [16].

Another class of approaches computes \(X \) and \(Y \) simultaneously [17]–[19].

B. Hand-Eye Calibration of SCARA Robots

Unfortunately, it is not possible to simply apply the methods for articulated robots to SCARA robots. In [13], the authors state that the error of the hand-eye calibration of articulated robots is inversely proportional to the sine of the angle between the screw axes (robot motions can be represented by screws, see below). Because the rotation axes of SCARA robots are parallel, all screw axes are parallel, too. Consequently, the error would be infinite. In particular, it is shown in [14] that if all screw axes are parallel, one parameter cannot be determined by the hand-eye calibration.

The hand-eye calibration of SCARA robots has drawn considerably less attention compared to articulated robots. In [20] and [21], linear methods are presented for solving the rotational part of the hand-eye calibration that work for robots with only one degree of freedom in rotation. Both approaches assume restricted specifically designed robot motions during calibration. In [5], a linear solution is presented that does not impose such restrictions on the robot motion while the calibration data is gathered. The linear solution is then used as an initial condition within an iterative optimization framework to further improve the accuracy. The author emphasizes that only up to five of the six unknown pose parameters can be determined and claims that the missing sixth parameter is irrelevant for the pose measurement of the sensor. Like [12] and [13], the linear method proposed in [5] solves for rotation and translation separately, which also results in the disadvantage that rotational errors propagate and increase translational errors.

In this paper, we extend the approach of [1], which is based on dual quaternions and handles rotation and translation simultaneously, for the calibration of SCARA robots. Furthermore, we show that for practical applications it is indeed necessary to know all of the six pose parameters. Therefore, we propose a pragmatic solution to determine the unknown sixth parameter. Finally, experiments on synthetic as well as on real data are presented.

II. HAND-EYE CALIBRATION OF SCARA ROBOTS USING DUAL QUATERNIONS

A. Screw Theory

To better understand the relation between the motion of the tool and calibration object, screw theory can be used. It was first proposed for hand-eye calibration in [14]. A screw \((d, \theta, \vec{L})\) describes a 3D rigid transformation (rotation and translation) through a translation \(d\) along the screw axis \(\vec{L}\) and
a rotation by the rotation angle \(\theta \) around the same axis. It is known from Chasles’ theorem that any rigid 3D transformation can be described by a screw [1].

In [14], the motions \(A \) and \(B \) in (2) are expressed as screws. This allows to simultaneously solve for rotation and translation during hand-eye calibration. Because the calibration object is rigidly connected to the robot tool, the transformation between both coordinate systems is constant over time. The screws \(A \) and \(B \) represent the same rigid 3D transformation seen from different coordinate systems. The hand-eye calibration problem can be interpreted as finding the rigid transformation that aligns both screws [1]. The screw congruence theorem further tells us that the rotation angle \(\theta \) and the translation \(d \) of two screws are identical if one screw is the result of a rigid transformation applied to the other screw [14]. Consequently, the task of aligning screws reduces to aligning their screw axes, i.e., lines, in 3D space.

In [14], it is shown that at least two non-parallel robot motions are necessary to fix all degrees of freedom of the alignment of screw axes. For SCARA robots, all rotation axes, and hence all screw axes, are parallel to the \(z \) axis of the robot base coordinate system. Two parallel motions only fix five of the six parameters of the unknown transformation between the base and camera coordinate system. Therefore, for SCARA robots, the translation \(t_z \) along the \(z \) axis of the robot base coordinate system is undetermined [5], [14].

Screw theory is the foundation of the calibration method for articulated robots presented in [1], which simultaneously solves for rotation and translation. It will be described and extended for SCARA robots in the next section.

B. Dual Quaternions

Quaternions \(\mathbf{q} = (q, \bar{q}) \) with scalar part \(q \) and vector part \(\bar{q} \) are an extension of complex numbers to \(\mathbb{R}^4 \). For every rotation about an axis \(\hat{n} = (||\hat{n}|| = 1) \) with an angle \(\theta \), there exist two corresponding unit quaternions \(\mathbf{q} = (\cos(\theta/2), \bar{n} \sin(\theta/2)) \) and \(-\mathbf{q} \) that each map a vector \(\mathbf{v} \in \mathbb{R}^3 \) to the rotated vector \(q(0, \hat{p})\mathbf{v}, \) where \(\hat{q} \) is the conjugate quaternion \((q, -\bar{q}) \).

Dual numbers are defined as \(\tilde{z} = a + eb \) with the real part \(a \), the dual part \(b \), and the dual unit \(e^2 = 0 \). Dual 3-vectors \(\tilde{z} \) with orthogonal real and dual parts are a representation of lines in \(\mathbb{R}^3 \), known as Plücker coordinates, where the real part is the direction of the line and the dual part is its moment. The line with direction \(\hat{l} \) through the point \(p \) is \(\tilde{z} = \hat{l} + e(\hat{p} \times \hat{l}) \).

Dual quaternions are an extension of quaternions to dual numbers. A general introduction to dual quaternions can be found in [22], a brief outline is included in [1]. Similar to how unit quaternions are a tool to easily manipulate rotations in 3D space, dual unit quaternions can be used as a representation of rigid 3D transformations. Dual quaternions directly encode screws and have advantages over homogeneous transformation matrices when transforming lines in 3D [23].

A dual quaternion \(\mathbf{q} = q + cq' \) consists of the quaternions \(q \) (real part) and \(q' \) (dual part) with 4 elements each and is also often written as a single 8-vector. For unit dual quaternions, the following two conditions hold:

\[\mathbf{qq} = 1 \Rightarrow q^\top \bar{q} = 1 \]

and

\[\mathbf{qq}' + q\bar{q}' = 0 \Rightarrow q^\top q' = 0. \]

C. Hand-Eye Calibration

Dual vectors (lines) can be written as pure dual quaternions (scalar part 0). The rigid transformations of the screw axes can be written concisely by using dual quaternions [23]:

\[\mathbf{a} = \tilde{x}\mathbf{b}. \]

where \(a = a + c\mathbf{a}' \) and \(b = b + c\mathbf{b}' \) are unit dual quaternions that represent the screws for the tool and the calibration object, respectively, for a single robot motion. \(\tilde{x} = x + c\mathbf{a}' \) is a unit dual quaternion that represents the unknown transformation \(X \). In [1], the definition of dual quaternion multiplication is used to rewrite (5) as

\[S\begin{pmatrix} x \\ x' \end{pmatrix} = 0 \]

with the \(6 \times 8 \) matrix

\[S = \begin{pmatrix} \tilde{a} - \tilde{b} & [\tilde{a} + \tilde{b}] \times & 0 & 0 \\ \tilde{a}' - \tilde{b}' & [\tilde{a}' + \tilde{b}'] \times & 0 & 0 \\ \end{pmatrix} \]

encoding the result of the dual quaternion multiplication, where \(a = (0, \mathbf{a}) \), \(a' = (0, \mathbf{a}') \), \(b = (0, \mathbf{b}) \), and \(b' = (0, \mathbf{b}') \) represent the screw axes. Stacking the matrices \(S_i \) from all \(m \) motions results in the \(6m \times 8 \) matrix \(T^\top = (S_1^\top S_2^\top \ldots S_n^\top)^\top \), which can be decomposed by the SVD as:

\[T = U\Sigma V^\top. \]

For articulated robots, \(T \) has rank 6, and hence results in two vanishing singular values with the two corresponding right singular vectors \(\tilde{v}_7 \) and \(\tilde{v}_8 \). The set of solutions is the null space of \(T \):

\[\begin{pmatrix} x \\ x' \end{pmatrix} = \lambda_1 \tilde{v}_7 + \lambda_2 \tilde{v}_8. \]

The remaining two degrees of freedom can be fixed by substituting the two unity constraints (3) and (4) into (9). This leads to a system of two quadratic polynomials in \(\lambda_1 \) and \(\lambda_2 \), which can be directly solved for \(x \) [1].

For SCARA robots, the rank of the matrix \(T \) is 5 in the noise-free case. This results in three vanishing singular values and three matching right singular vectors \(\tilde{v}_6 \), \(\tilde{v}_7 \), and \(\tilde{v}_8 \), yielding the set of solutions:

\[\begin{pmatrix} x \\ x' \end{pmatrix} = \lambda_1 \tilde{v}_6 + \lambda_2 \tilde{v}_7 + \lambda_3 \tilde{v}_8. \]

We know that there exists a 1D space of equivalent solutions, i.e., solutions with identical algebraic error. Therefore, it is sufficient to obtain one arbitrary solution out of this set (i.e., a solution for an arbitrary \(t_z \)). For this, we set \(\lambda_3 = 0 \), and hence reduce (10) to (9), which again can be solved as described above. A geometric interpretation shall justify this approach: From (10), we know that we have a 3D solution space spanned by the three 8D vectors. The constraints (3) and (4) represent a 1D manifold within this solution space. Setting \(\lambda_3 \) to 0 restricts the original 3D solution space to a 2D hyperplane. The intersection of the 1D manifold with the 2D hyperplane results in a single solution. This assumes that the 1D manifold always intersects the 2D hyperplane. In [1], it is shown that
(9) always has a solution. Since we reduced the SCARA case from (10) to (9), it must have a solution, too. It follows that the 1D manifold always intersects the 2D hyperplane.

In section III-E, we will present methods to determine the real value of the undetermined t_z, which is essential for most practical applications.

III. IMPLEMENTATION

A. Selection of Robot Motions

In [24], it is pointed out that combining poses into motions in their chronological order is not the best choice in terms of numerical stability. Instead, it is proposed to select combinations of poses such that the orientation of the rotation axes of both poses are maximally different. While this criterion is not applicable for the calibration of SCARA robots, the basic idea is still useful.

The first criterion that we apply is the rotation angle of the screws. If the rotation angle is small, the screw axis is not well-defined and might be unstable in noisy conditions. Therefore, robot motions with larger rotation angles should be preferred.

The second criterion is again based on the screw congruence theorem, which for dual quaternions requires that the scalar parts of \hat{a} and \hat{b} are equal. Because of measurement errors, inaccuracies of the robot, and noise, this condition is not perfectly fulfilled. Therefore, motion pairs \hat{a} and \hat{b} with smaller differences in their scalar parts should be preferred.

In [24], a score is computed for all possible pose pairs. Then, the pairs with highest scores are selected for calibration. This may result in an unfavorable weighting, where some robot poses are represented multiple times while others are completely ignored. We propose the following approach instead: To apply the first criterion, for each pose A_i and B_i of the n robot poses, find the robot poses A_j and B_j with maximum rotation angle $|r_a| + |r_b|$, where r_a and r_b are the screw angles of the corresponding robot motions $A = A_j^{-1}A_i$ and $B = B_jB_i^{-1}$. This results in n robot motions. To apply the second criterion, for each pose pair A_i and B_i, find the pose pair A_j and B_j for which the rotation and translation components of the corresondings screws A and B differ the least, i.e., for which the scalar parts of \hat{a} and \hat{b} differ the least. Hence, after eliminating duplicates, up to $2n$ robot motions are selected for calibration.

B. Antiparallel Screw Axes

If the camera is mounted such that its z axis is parallel to the z axis of the base coordinate system, all vectors \vec{a} are either $(0,0,s)^T$ or $(0,0,-s)^T$ (with $s = \sin(\theta/2)$) depending on whether the z axes point in the same or in opposite directions. Furthermore, all vectors \vec{b} are always either $(0,0,s)^T$ or $(0,0,-s)^T$. Equation (7) involves a vector product with the vector $\vec{a} + \vec{b}$. Therefore, it might happen that all \vec{a} are antiparallel to the corresponding \vec{b}, and hence their sum vanishes. In this case, \vec{T} degrades to rank 4. For articulated robots, in general the screw axes of most robot motions are not parallel, even if the z axes of the coordinate systems are. For SCARA robots, if all screw axes \vec{a} and \vec{b} point in opposite directions ($\vec{a}^T\vec{b} < 0$), we propose to applying a rotation \vec{r} of 180° around the x axis to both sides of (5), yielding $\vec{r}\vec{a}\vec{r} = \vec{r}\hat{a}\vec{r}$. By substituting $\vec{a}^* := \vec{r}\vec{a}\vec{r}$ and $\vec{b}^* := \vec{r}\vec{b}\vec{r}$, we obtain a modified problem formulation $\vec{a}^* = \vec{b}^*\vec{b}^*\vec{a}^*$ with \vec{a}^* and \vec{b} now pointing to the same half space. After performing the hand-eye calibration, the solution of the original formulation can be obtained by $\vec{x} = \vec{r}\vec{a}^*$.

C. Sign Ambiguity of Screws

In the same way that two unit quaternions \vec{q} and $-\vec{q}$ represent the same rotation, every rigid transformation can be described by two screws \vec{q} and $-\vec{q}$. Extracting the translation and rotation components from both screws results in $d^+ = -d^-$ and $\theta^+ = 2\pi - \theta^-$. The screw congruence theorem that is assumed in (5) requires $d_a = d_b$ and $\theta_a = \theta_b$. Consequently, it is important to choose the signs of the screws \hat{a} and \hat{b} consistently.

In [14], two approaches for solving the sign ambiguity are proposed. The first orients the screw axis such that $d > 0$. For d close to 0, this method becomes unstable. The second approach constrains the rotation angle θ to $0 \leq \theta < \pi$, which becomes unstable for θ close to 0 or π. In [1], the scalar parts, which represent both θ and d, are checked for equality for all robot motions. Because for SCARA robots all screw axes are parallel, it is sufficient to determine the sign only for a single robot motion and fix the signs of all other motions accordingly. For this, we select the most unambiguous motion pair as the reference motion, i.e., the motion pair for which θ differs most from 0 and π. Then, the screw axes of all other motions are compared to the axis of the reference motion and flipped if necessary.

D. Refinement by Nonlinear Optimization

The resulting poses of the described linear approach can be used as initial values in a nonlinear optimization framework to further increase the accuracy. For this, we compute the error matrix

$$E = \text{tool } H_{\text{cal}} - \text{tool } H_{\text{base, cal}} H_{\text{base, cam}} H_{\text{cam}} H_{\text{cal}}$$

and minimize

$$e = \sum_{i=0}^n \text{tr}(E_i\vec{W}E_i^T), \quad \text{where } \vec{W} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 9 \end{pmatrix}$$

over all n robot poses using the Levenberg-Marquardt algorithm. The matrix \vec{W} balances the different number of entries in E for rotation and translation (9 and 3, respectively). Furthermore, the translation part of all input matrices is scaled by $1/D$, where D is the maximum extent of the workspace defined by the robot poses. This ensures that the results are scale-invariant and errors in rotation and translation are weighted appropriately. Because t_z cannot be determined, the minimization is performed by varying only 11 of the 12 pose parameters and leaving t_z fixed.
E. Determination of the Real z

For most practical applications, it is essential to know z. Otherwise, objects for which the pose was determined in the camera coordinate system cannot be grasped by the robot. The following approach works well in practice:

Let us assume that $\text{tool} \ H_{\text{cal}}$ and $\text{base} \ H_{\text{cam}}$ (see (1)) are known from the calibration up to the z component of the translation part of $\text{tool} \ H_{\text{cal}}$. To determine z, the calibration object is detached from the robot and placed at an arbitrary position such that it can be observed by the camera. The pose of the calibration object is then automatically determined in the camera coordinate system to obtain $\text{cam} \ H_{\text{cal}}$. From this, we can compute the z component of the translation of $\text{base} \ H_{\text{cal}} = \text{base} \ H_{\text{cam}} \text{cam} \ H_{\text{cal}}$, which we will denote z_{calib}. Then, the tool of the robot is manually moved to the origin of the calibration object, which gives us $\text{tool} \ H_{\text{base}}$. The z component of the translation of $\text{base} \ H_{\text{tool}}$ represents the true translation and is denoted as z_{true}. z_{true} and z_{calib} represent the same physical distance, and hence must be identical. This can be achieved by modifying the z component of $\text{tool} \ H_{\text{cal}}$ by $z_{\text{true}} - z_{\text{calib}}$. Finally, $\text{base} \ H_{\text{cam}}$ can be computed by closing the chain of transformations (1).

The case of a moving camera can be treated similarly. However, for some setups it is not possible for the camera to observe the calibration object if the tool is moved to the origin of the calibration object. Let us assume that $\text{base} \ H_{\text{cal}}$ and $\text{cam} \ H_{\text{tool}}$ are known from the calibration up to the z component of the translation part of $\text{base} \ H_{\text{cal}}$. In this case, the robot is manually moved to two poses. First, the tool is moved such that the camera can observe the calibration object. Now, an image of the calibration object is acquired and the tool pose is queried, which gives us $\text{cam} \ H_{\text{cal}}$ and $\text{base} \ H_{\text{tool}}$. Second, the tool of the robot is moved to the origin of the calibration object, yielding $\text{base} \ H_{\text{tool}}, z_{\text{true}}$ is the z component of the translation of $\text{tool} \ H_{\text{base}} \text{base} \ H_{\text{tool}} \text{calib}$ is the z component of the translation of $\text{tool} \ H_{\text{cal}} \text{cam} \ H_{\text{cal}}$. Again, $z_{\text{true}} - z_{\text{calib}}$ can be used to correct the z component of $\text{base} \ H_{\text{cal}}$.

Actually, it is sufficient in the above approaches to move the tool to a point with the same z coordinate in the base coordinate system as the origin of the calibration object. Sometimes, however, the origin or even a point with the same z coordinate cannot be reached by the tool. In this case, the tool should be moved to a point with known height (i.e., vertical distance in z direction of the base coordinate system) above or below the origin. The z component of the transformation must additionally be corrected by this height.

IV. EXPERIMENTAL RESULTS

We tested our algorithms on synthetic and real data. For the experiments with synthetic data, we simulated different setups with a stationary camera, which was mounted about 1.5 m above the robot base and a calibration object that was attached to the robot tool at a distance of about 0.2 m. The robot poses were randomly created within a workspace of size $0.6 \times 0.6 \times 0.6 \text{m}^3$.

In the first experiment, we investigated the influence of noise on the accuracy of the calibration. For this, we added noise of different amplitudes to the position and rotation components of $\text{cam} \ H_{\text{cal}}$, while assuming error-free robot poses $\text{tool} \ H_{\text{base}}$. For each noise amplitude, we created 15 random robot poses, performed the calibration, and repeated the experiment 500 times. Fig. 2(a) and (b) show the mean position and rotation errors of the resulting pose $\text{base} \ H_{\text{cam}}$ for the linear approach using dual quaternions and for the nonlinear optimization. All errors increase linearly with the noise amplitude. Furthermore, the advantage of the subsequent nonlinear optimization is clearly visible.

In the second experiment, we investigated the influence of the number of robot poses on the accuracy of the calibration. For this, we kept the noise magnitude fixed at 0.4 mm and 0.1 ° and repeated the experiment 500 times again. Fig. 2(c) and (d) show the corresponding mean errors. It should be noted that the errors rapidly decrease for the first 10 images. Further increasing the number of poses only slightly improves the accuracy.

For the experiments with real data, we attached a HALCON calibration plate to the tool of a DENSO robot HS-45452E/GM. A calibrated camera (IDS uEye UI-2240-M, 1/2"., 1280×1024, $f = 16 \text{mm}$) was mounted stationary 0.9 m above the robot. At each of 12 calibration poses, we acquired an image of the calibration plate and determined $\text{cam} \ H_{\text{cal}}$ by using HALCON [4, chapter 3.9]. The hand-eye calibration using the linear approach results in RMS / maximum errors of 0.30 mm / 0.60 mm in translation and 0.06 ° / 0.11 ° in rotation. The nonlinear optimization further decreases the errors to 0.20 mm / 0.31 mm in translation and 0.05 ° / 0.10 ° in rotation.

V. CONCLUSIONS AND OUTLOOK

In [1] a method for hand-eye calibration of articulated robots based on dual-quaternions is proposed, which shows advantages over methods that handle rotation and translation separately. In this paper, we extended the work of [1] to SCARA robots. For this, we argued why it is feasible to reduce the three degrees of freedom in (10) by setting $\lambda_3 = 0$ to the original problem with two degrees of freedom, which can be solved easily. In future work we will further justify this approach by giving a sound mathematical proof.

To further improve the accuracy, we proposed a subsequent nonlinear optimization. We addressed several practical implementation issues and showed the effectiveness of the method by evaluating it on synthetic and real data. It was already shown by [1] that the dual-quaternions-based method is superior to the separate estimation of rotation and translation. Nevertheless, in the future we will extend our evaluation by comparing our dual-quaternion-based approach to the linear approach proposed in [5].

REFERENCES

Fig. 2. Mean error in position (a) and rotation (b) of the hand-eye calibration for different noise levels and 15 random robot poses when using the linear approach using dual quaternions (dashed line) and when performing a subsequent nonlinear optimization (solid line); Mean error in position (c) and rotation (d) for different number of robot poses and a constant noise level.

