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ABSTRACT
This paper describes the computational model underlying the AG-
ILO autonomous robot soccer team, its implementation, and our
experiences with it. The most salient aspects of the AGILO control
software are that it includes (1) a cooperative probabilistic game
state estimator working with a simple off-the-shelf camera sys-
tem; (2) a situated action selection module that makes amble use
of experience-based learning and produces coherent team behavior
even if inter-robot communication is perturbed; and (3) a playbook
executor that can perform preprogrammed complex soccer plays in
appropriate situations by employing plan-based control techniques.
The use of such sophisticated state estimation and control tech-
niques distinguishes the AGILO software from many others ap-
plied to mid-size autonomous robot soccer. The paper discusses
the computational techniques and necessary extensions based on
experimental data from the 2001 robot soccer world championship.

1. INTRODUCTION
Robotic soccer has become a standard “real-world” testbed for

autonomous multi robot control. In robot soccer (mid-size league)
two teams of four autonomous robots — one goal keeper and three
field players — play soccer against each other. The soccer field
is four by nine meters big surrounded by walls. The key charac-
teristics of mid-size robot soccer is that the robots are completely
autonomous. Consequently, all sensing and all action selection is
done onboard of the individual robots. Skillful play requires our
robots to recognize objects, such as other robots, field lines, and
goals, and even entire game situations. The robots also need to col-
laborate by coordinating and synchronizing their actions to achieve
their objectives — winning games.

In this paper, we show how the AGILO autonomous robot soccer
team meets these challenges. The AGILO robot controllers employ
game state estimation, situated action selection, and playbook ex-
ecution as their main control mechanisms. The game state estima-
tor estimates the complete game situation, including the position
of the opponent robots and the ball almost at frame rate using a
cheap off-the-shelf camera system. The use of such a vision system
yields considerable innaccuracies in the sensor data and highly in-
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complete information about the game situation. The AGILO game
estimator deals with these problems by employing sophisticated
probabilistic reasoning techniques and by exploiting the coopera-
tion between the game state estimators of different robots. The sec-
ond component of the individual robot controllers selects appropri-
ate actions based on an assessment of the current estimated game
state. The situated action selection mechanism is the default mech-
anism for choosing actions and must therefore propose reasonable
actions for all possible situations. Because the AGILO robots are
nonholonomic and difficult to steer, the AGILO soccer robots em-
ploy experience-based learning mechanisms to acquire competence
in robot control. Finally, the playbook executor performs prepro-
grammed complex soccer plays in appropriate situations by em-
ploying plan-based control techniques. The use of plan-based ac-
tion selection enables the robots to additionally exploit knowledge
about the current intentions of the team mates.

The remainder of this paper explains how these mechanisms have
been implemented and embedded into the AGILO robot control
software. We report on our experiences with the software and lay
out our plans for the next generation of the system.

2. OVERVIEW
The AGILO RoboCup team is realized using inexpensive, off the

shelf, easily extendible hardware components and a standard soft-
ware environment. The team consists of four Pioneer I robots; one
of them is depicted in figure 1(a). The robot is equipped with a
single onboard linux computer (2), a wireless ethernet (1) for com-
munication, and several sonar sensors (4) for collision avoidance.
A color CCD camera with an opening angle of 90

�

(3) is mounted
fix on the robot. The robot also has a guide rail (5) and a kicking
device (6) that enable the robot to dribble and shoot the ball.

(a) (b)
Figure 1: An AGILO soccer robot (a) and a game situation (b).

Besides giving us a substantial handicap in the games, the hard-
ware also confronts us with challenging research problems. The
camera system with an opening angle of 90

�

and pointed to the
front gives an individual robot only a very restricted view of the
game situation. Therefore, the robot needs to cooperate to get a



more complete picture of the game situation. Vibrations of the
camera, spot light effects, and poor lighting effects cause substan-
tial inaccuracies. Even small vibrations that cause jumps of only
two or three pixel lines cause deviations of more than half a meter
in the depth estimation, if the objects are several meters away. The
robots are nonholonomic which implies that reaching many target
positions requires complex and accurate driving maneuvers. As a
consequence, simple heuristics for deciding which robot should get
to the ball and how do not work well.
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Figure 2: Software architecture of an AGILO robot controller.

The main software components of the AGILO robot controllers
are depicted in figure 2. The incoming video streams are processed
by the vision-based cooperative state estimation module, which
computes the belief state of the robot with respect to the game situa-
tion. The action selection module then computes an abstract feature
description of the estimated game state that can be used to recog-
nize relevant game situations. There are two basic components for
action selection. First, the situated action selection module selects
action based on a limited horizon utility assessment. Second, a
plan-based controller that enables the team to execute more com-
plex and learned plays. The sections 3-5 detail the software design
and the operation of these software components.

3. VISION-BASED, COOPERATIVE GAME
STATE ESTIMATION

The game state estimators of the AGILO robots maintain a be-
lief state that contains the respective robot’s belief about the current
game situation [16]. The belief state includes the estimated posi-
tions and orientations of the robot itself, its team mates, the ball,
and the opponent robots and provides the information that is nec-
essary for selecting the appropriate actions (see figure 3).
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Figure 3: Software architecture of the state estimator.

Estimating the game state both accurately and reliably is very
difficult because the state is to be estimated by multiple mobile in-
accurate sensors with uncertain positions, the soccer field is only

partly accessible for each sensor due to occlusion caused by other
robots and a limited camera view, the robots change their direc-
tion and speed very abruptly, the models of the dynamic states of
the robots of the other team are very crude and uncertain, and it
requires the processing of vast amounts of data very quickly.

State estimation is an iterative process where each iteration is
triggered by the arrival of a new piece of evidence, a captured im-
age or a state estimate broadcasted by another robot. The state esti-
mation subsystem consists of three interacting estimators: the self
localization system, the ball estimator, and the opponents estima-
tor. This decomposition of game state estimation into specialized
estimation problems reduces the overall complexity of the state es-
timation process and enables the robots to exploit the structures
and assumptions underlying the different subtasks of the complete
estimation task. The remainder of this section describes the com-
ponents of the game state estimator.

3.1 Perception
The information needed for game state estimation is provided by

the perception system and includes the following kinds of informa-
tion: (1) partial state estimates broadcasted by other robots, (2) fea-
ture maps extracted from captured images, and (3) odometric in-
formation. The estimates broadcasted by the team mates comprise
the respective robot’s location, the ball’s location, and the locations
of the opponents. From the captured camera images the feature
detectors extract problem-specific feature maps that correspond to
(1) static objects in the environment including the goal, the borders
of the field, and the lines on the field, (2) a color blob corresponding
to the ball, and (3) the visual features of the opponents.

Figure 4: The figure shows an image captured by the robot and
the feature map that is computed for self, ball, and opponent
localization.

The working horse of the perception component are a color clas-
sification and segmentation algorithm that is used to segment a cap-
tured image into colored regions and blobs (see figure 4). The color
classifier is learned in a training session before tournaments in or-
der to adapt the vision system to specific lighting conditions and ef-
fects. We are currently working on the next version of the classifier,
which will be capable of automatically adjusting itself to changing
lighting conditions during the game.

3.2 Self Localization



Each robot’s belief about its own position is maintained as a
probability density function that maps the possible positions of the
robot into the probability density that the respective position has
generated the observations of the robot and is caused by the se-
quence of driving actions issued by the robot. The probability den-
sity is approximated by a multi-variate Gaussian density and repre-
sented using its mean vector

��
and its covariance matrix ���� .

The robot’s model of the static part of its environment that is
used for self localization is composed of landmarks together with
their positions and orientations. The landmarks include goals, field
lines, and walls surrounding the pitch. Figure 5 depicts an excerpt
of the environment model representing the neighborhood around
a goal, which is used for self localization in the robot soccer do-
main. The goal is modeled as a set of 3D lines where each line
is associated with a color transition. Using the world model and a
position estimate, the robot can predict where in a captured image
lines should be visible and which color transition they represent.
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Figure 5: Model of the neighborhood of a goal. The model
contains the edges of the objects and the color transition they
are the borderline of.

The self-localization algorithm [6] itself consists the iteration of
three steps. First, the visible 3D curve features are predicted and
projected into the image plane given the current estimated position.
Second, a local search is performed to establish correspondences
between the predicted and detected 3D curve features. Third, a
maximum a-posteriori (MAP) estimation step computes an esti-

mate
� ��

of the robot pose which best fits to the position prediction�	� ���
 and to the image observations ����� � .
3.3 Opponent Tracking

The opponent tracker tracks the positions of the other team’s
robots by (1) detecting feature blobs in the captured image that
might correspond to an opponent, (2) estimating the world coor-
dinates and uncertainties of these blobs, and (3) associating them
with the object hypotheses — tracked opponents.

Rough play ground, camera vibrations caused by accelerations,
unknown shapes of the opponent robots, and unpredictable oppo-
nent movements cause a lot of uncertainty. Therefore, the state esti-
mator has to deal with two different kinds of uncertainties. The first
one is the inaccuracy of the robot’s sensors. We represent this kind
of uncertainty using a Gaussian probability density. The second
kind of uncertainty is introduced by the data association problem,
i.e. assigning feature blobs to object hypotheses. This uncertainty
is represented by a hypotheses tree where nodes represent the asso-
ciation of a feature blob with an object hypothesis. A node � � ��� 

is a son of the node � � ������� 
 if � � ��� 
 results from the assignment
of an observed feature blob with a predicted state of the hypothe-
sis � � ������� 
 . In order to constrain the growth of the hypotheses
tree, it is pruned to eliminate improbable branches with every it-
eration of the MHT. Our MHT Algorithm (an extension of Reid’s
Multiple Hypotheses Tracking (MHT) algorithm [13]) is capable of
handling multiple mobile sensors with uncertain positions. Each it-

eration begins with the set of hypotheses � ������� 
 from the previous
iteration ����� . Each hypothesis represents a different assignment
of measurements to objects, which was performed in the past. The
algorithm maintains a Kalman filter for each hypothesis. For each
hypothesis a position of the dynamic objects is predicted  !�� ��� 
 and
compared with the next observed opponent performed by an arbi-
trary robot of the team. Assignments of measurements to objects
are accomplished on the basis of a statistical distance measurement.
Each subsequent child hypothesis represents one possible interpre-
tation of the set of observed objects and, together with its parent
hypothesis, represents a possible interpretation of past observations
assigned to the object. With every iteration probabilities describing
the validity of an hypothesis are calculated [4].

3.4 Cooperative State Estimation
The state estimation modules of different robots cooperate to in-

crease the coverage, accuracy, and reliability of the estimation pro-
cess. This is achieved by the individual robots broadcasting their
own observations and their covariances to their team mates. The
other robots use these broadcasted estimates as additional evidence
for their own estimation processes. Of course, how to weigh the
broadcasted estimates against the own perceived features is a sub-
tle and delicate issue. For example, we are weighing the own esti-
mates of the ball much higher than the broadcasted estimates. This
implies that in behaviors such as going to the ball the control sig-
nals are much tighter coupled to the robot’s own perception. The
other robots’ estimates of the ball are only considered as stronger
evidence if the ball is far away from the robot itself or not visible at
all. We are currently analyzing the advantages and disadvantages
of different parameterizations using our log files of the robocup
competition in this year.

Despite crude parameterizations, the cooperation between the
robots enables them to track temporarily occluded objects and to
faster recover their position after they have lost track of it. A rep-
resentative result of our cooperative game state estimation process
is shown in figure 10.

4. SITUATED ACTION SELECTION
AND EXECUTION

Throughout the game the AGILO robots have a fixed set of tasks
with different priorities. The tasks are shoot the ball into the goal,
dribble the ball towards the goal, look for the ball, block the way to
the goal, get the ball, ... The situated action selection module en-
ables the robots to select a task and to carry out the task such that in
conjunction with the actions of the team mates it will advance the
team’s objectives the most. We consider a task to be the intention
of the AGILO robot team to perform a certain actions. Action se-
lection and execution is constrained by (1) tasks being achieveable
only if certain conditions hold (eg, the robot has the ball) and (2) a
robot being able to only execute one action at a time.

We define that a task assignment "$# is better than "&% if there
exists a task in " % that has lower priority than all the ones in " # or
if they achieve the same tasks but there exists a task � in "$# such
that all tasks with higher priority are performed at least as fast as
in " % and � is achieved faster by " # than by " % . This performance
criterion implies that if an AGILO robot can shoot a goal it always
will try because this is the task with the highest priority. Also, if the
AGILO team can get to the ball it tries to get there with the robot
that can reach the ball the fastest. This strategy might not yield
optimal assignments but guarantees that the highest priority tasks
are achieved as quickly as possible.

To achieve a high degree of autonomy the AGILO robots per-



form the task assignment and execution distributedly on the indi-
vidual robots. This makes the task assignment more robust against
problems in inter robot communication. These problems can be
caused by robots being sent off the field, computers being crashed
after heavy collisions, and communication being corrupted due to
interferences with other communication channels.

The most salient features of the situated action selection are the
following ones. First, to realize a competent and fast task assign-
ment and execution mechanism the AGILO controllers make am-
ple use of automatic learning mechanisms. Second, the task as-
signment mechanism works distributedly on the individual robots
and are robust against communication corruptions. Finally, the task
assignment and execution mechanism always produces purposeful
behavior and always aims at the achievement of high priority tasks.

4.1 AGILO Simulator: a Tool for Learning
An important means for developing competent robot soccer skills

is a robot simulator that allows for realistic, controllable, and re-
peatable experiments. For this reason we have developed a robot
simulator that accurately simulates how the dynamic state of the
robot changes as the robot’s control system issues new driving com-
mands such as setting the target translational and rotational veloci-
ties. The AGILO software development environment therefore pro-
vides a robot simulator that uses multi layer neural network [7] to
simulate the dynamics of the AGILO soccer robots. We have used
the RPROP algorithm [14] for supervised learning in order to teach
the neural net the mapping dynamic states and control signals into
the subsequent states.

For specializing the simulator to the AGILO robots we have per-
formed a training session in which we have collected a total of more
than 10000 training patterns from runs with real AGILO robots for
a large variety of navigation tasks. Using a test set of patterns that
was not contained in the training patterns we determined that pre-
diction for the patterns for moderately difficult navigation tasks was
about 99%. The accuracy decreased to about 92% in situations
where both velocities, the translational and rotational one, were
changed abruptly at the same time. These inaccuracies are caused
by the lack of representative training patterns as well as the high
variance in navigation behavior with maximal acceleration.

4.2 Task Assignment
A very simple algorithm suffices to compute task assignments

that satisfy the performance criterion that we have stated before:

ASSIGN-TASKS ���������	� � " ��
�� 

1 for �� � to LENGTH

��� " ��
�� 

2 do ACTION � " ������������������� �"!$#&%'�	� � ����� � " ��
���( �) 
 � � " ��
"��( �)

The algorithm works as follows. In the beginning of each iter-
ation the action of each AGILO robot is reset to idle. Then the
algorithm iterates over all tasks in the order of their priority. It then
assigns the task to the idle AGILO robot that can achieve the task
the fastest. The task assignment algorithm does two things: first,
it computes the task that should be achieved by the robot itself and
second, it computes which higher priority tasks will probably be
achieved by which other robot.

The algorithm assumes knowledge of the cost of task achieve-
ment. For robot soccer we define the cost %'�	� � ��� � � " � 
 of a robot � �
performing an action " � as the time needed to complete an action
" � , that is, the time to reach a given target state. To make accurate
predictions a robot has to take its dynamic behavior, the intentions
of its team mates, and possible opponent movements into account.

The AGILO task cost estimator performs three steps. First, the

a b c

Figure 6: A training scenario in the multi robot simulation environ-
ment: To acquire training patterns for the neural projector * a robot is
set to a randomly defined start state + , (position of the robot in subfig-
ure a) and has to drive to a randomly defined target state +.- indicated
by the dashed arrow. The direction and length of this arrow indicate
the target state’s orientation and velocity. The time the robot needs to
reach its target state (subfigure b & c) is taken to complete the training
pattern /�/0+1,�23+ -54 ,time 4 .
selection of the multi robot navigation method that matches the
game state best. By taking the estimated game state into account
the cost estimator can take even expectations about the movements
of the opponents into account. Second, computing a path in the
context of the navigation paths of the team mates. This is done by
computing navigation paths that avoid negative interferences with
the paths computed for the higher priority tasks (see section 4.3).
Third, the proposed path is then decomposed into a sequence of
simpler navigation tasks for which the time cost can be accurately
predicted using a neural network. The mapping from navigation
tasks, given by start points and destinations, into the time cost
needed for the task completion is realized through a multi layer
artificial neural network and learned through the backpropagation
derivative RPROP [?]. We have trained the network using about
300.000 training patterns generated from accomplishing random
navigation tasks in the learned simulator (see figure 6).

4.3 Multi Robot Navigation Planning
Each robot also employs a multi robot navigation planner in or-

der to plan its own path in the context of the intentions of the team
mates. The planner is given a joint navigation task that specifies a
target state (position, orientation and velocity) for each robot of the
team. The objective of the navigation system is to achieve a state
where each robot is at its target state as fast as possible.
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Figure 7: Navigation plans for a given single robot navigation task as
proposed by different navigation planning methods.

But which navigation planning method should a robot apply to
achieve its objectives? Contemplate figure 7. The figure depicts
a single robot navigation task in a typical game situation and the
navigation plans proposed by different navigation planning algo-



rithms with different parameterizations. The figure illustrates that
the paths computed by the different methods are qualitatively very
different. While one path is longer and keeps larger distances to the
closest obstacles another one is shorter but requires more abrupt di-
rectional changes. The performance that the paths accomplish de-
pends on many factors that the planning algorithms have not taken
into account. These factors include whether the robot is holonomic
or not, the dynamic properties of the robot, the characteristics of
change in the environment, and so on. As a consequence, it seems
impossible to analytically predict which navigation algorithm and
parameterization works best for our application.

Rather than designing yet another multi robot navigation algo-
rithm we have decided to equip the AGILO robots with a hybrid
robot navigation planning system. The system [3] employs differ-
ent single robot navigation and plan merging mechanisms and se-
lects the appropriate methods based on an assessment of the given
navigation task and game situation. This way the system can ex-
ploit the different properties of the individual methods by learning
for which navigation tasks the methods are best suited.

The planning methods employed by the AGILO navigation sys-
tem include the Potential Field Method [9], the Shortest Path Method
[9], Circumnavigating Obstacles [9], and Maximizing the Clear-
ance [9]. Plan merging and repair methods include methods for
merging plans that add waiting steps in order to avoid interferences.
Path replanning methods revise the individual plans such that no
negative interferences will occur include the Definition of Tempo-
rary Targets, the Hallucination of Obstacles at Critical Sections,
and the Insertion of New Obstacles. The first one modifies the path
by introducing additional intermediate target points. The second
one hallucinates additional obstacles at the positions where colli-
sions might occur. The third one simply considers the other robot
at its respective position as a static obstacle.

The predictive model of the expected performance of different
navigation planning methods is specified by rules such as the fol-
lowing one:

if there is one intersection of the navigation problems�
the navigation problems cover a small area ( ������� �
	 % )�
the target points are close to each others ( �������	 )�
the starting/target point distances are small ( ����	 )

then fastest-method( / potential field,temp. targets 4 )
This rule essentially says that the potential field method is appro-

priate if there is only one intersection and the joint navigation prob-
lem covers at most one fourth of the field, and the target points are
close to each others. This is because the potential field algorithm
tends to generate smooth paths even for cluttered neighborhoods.

We have learned a set of 10 rules including the one above using
the decision tree learning C4.5 algorithm [12] with standard param-
eterization and subsequent rule extraction. To do so we have col-
lected a training set of 1000 data records, where each data record
contained a description of a randomly generated navigation task
and the time resources required to complete the task for each pos-
sible combination of navigation planning and plan repair method.

The language for characterizing navigation tasks uses 7 features
(see figure 8): (1) the number of intersections between the line seg-
ments that represent the navigation tasks, (2) the size of the bound-
ing box of the navigation tasks, (3) the minimal linear distance be-
tween different starting positions, (4) the minimal linear distance
between different target positions, (5) the minimal distance be-
tween the line segments that represent the navigation tasks, (6) the
maximum length of the linear distances of the individual navigation
tasks, and (7) the number of obstacles in the bounding box of the
joint navigation task.
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Figure 8: Visualization of navigation task features that are used
for classifying navigation tasks.

To sum up, the AGILO multi robot navigation algorithm works
as follws. First, the appropriate planning mechanism is selected
based on the assessment of the given navigation task and the situa-
tion in which it is to be executed. In the second step, the joint nav-
igation task is decomposed into single robot navigation problems.
The individual problems are then solved using the selected plan-
ning methods. Then, the individual plans are repaired in order to
avoid negative interferences with the higher priority plans. Finally,
the algorithm extracts sequences of target states from the robot’s
own navigation plan and sends those sequences to the robot’s neural
network controller, which is further described in the next section.

4.4 Execution of Navigation Plans
The robot motion controllers are used for achieving given dy-

namic states as fast as possible. The motion controller receives
the target state (for example, the next state on a planned path) of
a robot and returns low level commands that transform the current
state into the target state as fast as possible. To arrive at the tar-
get state different trajectories are possible. But how to set them to
quickly reach the target state? The AGILO robot controllers learn
a direct mapping from the robot’s current state ( ��� ) and the robot’s
target state ( � -�� ����� - ) to the next command to be executed ( � � ) us-
ing multi layer artificial neural networks [7] and the RPROP [14]
algorithm: Net: ��� � � � -�� ����� -�� �! � � .

5. PLAN-BASED CONTROL
While our situated action selection aims at choosing actions that

have the highest expected utility in the respective situation it does
not take into account a strategic assessment of the alternative ac-
tions and the respective intentions of the team mates. This is the
task of the plan-based action control. While situated action selec-
tion achieves an impressive level of performance it is still hampered
by the requirement for small action and state spaces, a limited tem-
poral horizon, and without explicitly taking the intentions of the
team mates into account.

The goal of plan-based control in robotic soccer is therefore to
improve the performance of the robot soccer team by adding the
capability of learning and execute soccer plays. Soccer plays are
properly synchronized, cooperative macro actions that can be exe-
cuted in certain game contexts and have, in these contexts, a high
success rate. Plans for soccer plays specify how the individual play-
ers of a team should respond to changing game situations in order
to perform the play successfully.

The integration of soccer plays into the game strategies enables
robot teams to consider play specific state spaces for action selec-
tion, parameterization, and synchronization. In addition, the state
space can reflect the intentions of the other robots. An action that
is typically bad might be very good if I know that my team mate
intends to make a particular move. Further, action selection can
consider a wider time horizont, and the robots can employ play



specific routines for recognizing relevant game situations.
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Figure 9: Block diagram of the high-level controller of the AG-
ILO soccer robots.

In order to realize an action assessment based on strategic con-
sideration and on considerations of the intentions of the teammates,
we develop a robot soccer playbook, a library of plan schemata that
specify how to perform individual team plays. The plans, or bet-
ter plays, are triggered by opportunities, for example, the opponent
team leaving one side open. The plays themselves specify highly
reactive, conditional, and properly synchronized behavior for the
individual players of the team.

The high-level controller of each soccer robot is realized as a
structured reactive controller (SRC) [1] and implemented in an ex-
tended RPL plan language [10]. The high-level controller works
as follows. It executes as the default strategy the situated action
selection. At the same time, the controller continually monitors
the estimated game situation in order to detect opportunities for
making plays. If an opportunity is detected, the controller decides
based on circumstances including the score and the estimated suc-
cess probability of the intended play whether or not to perform the
play.

6. DEMONSTRATION
The AGILO robot soccer team, described in this paper, has par-

ticipated in the fifth robot soccer world championship in Seattle
(2001). The team has played six games for a total of about 120
minutes. The team advanced to the quarter finals playing games
against Sharif CE (7:0), SPQR (7:0), Eigen (0:4), Ulm Sparrows
(7:0), GMD Robots (1:1), and COPS Stuttgart (0:1). In the tour-
nament none of the AGILO players was sent off the field because
of causing collisions with opponent players or not leaving penalty
area in time. Most of the occasions in which the AGILO players
had to be taken off to be restarted seemed to be caused by hard-
ware problems. Unfortunately, in midsize robot soccer there is no
external sensing device which records a global view of the game
and can be used as the ground truth for experiments. Thus for the
experimental results in this section we can only use the subjective
information of our robots and argue for the plausibility of their be-
havior and belief states.

6.1 Game State Estimation
A typical result of the AGILO game state estimator is shown in

figure 10. The upper picture shows the tracked positions of the
AGILO players and the ball. The lower picture shows the individ-
ual observations of the opponent robots. The colors of the obser-
vations indicate which AGILO robot the observation made. The
dashed lines show the tracks of the opponent robots. You have to
look at the color figures in order to see the individual observations
of the different robots and how they are merged into a consistent
track. Qualitatively, we can estimate the accuracy of the game state
estimation by looking for the jumps in the tracked lines. We can

see that the own tracks are smooth and can therefore be expected
to be accurate. Also, the tracks of the ball look very reasonable.
The tracks of the opponents are less accurate and only partial. This
must be expected due to the high inaccuracy and incompleteness of
the sensory data and the lack of odometry data. One can see that
the blue AGILO robot occasionally perceived the AGILO goalie as
an opponent player.

Figure 10: Results of the game state estimation process during
a thirty seconds game episode against Ulm Sparrows in which
the AGILO team scores a goal. The upper picture shows the
results of the self localization processes of the individual robots
and the tracking results for the ball (dotted lines) The lower
picture shows the results of tracking the opponent players.

We are very pleased with the performance of our game state esti-
mation module. The self localizations of the robots seems to work
very accurately and reliably. There are very few jumps in the tracks
which would indicate localization errors. The same holds for the
ball track. As can be expected, tracking the opponent players is
much more difficult. It is very hard to extract the tracks out of
the clouds of different observations. However, we see that several
tracks resulted from merging the observations of different robots.
In addition, the merging of the different observations results in
fewer hallucinated obstacles and therefore allows for more effcient
navigation paths.

Our preliminary results suggest that purely image-based proba-
bilistic estimation of complex game states is feasible in real time
even in complex and fast changing environments. We have also
seen that maintaining trees of possible tracks is particularly useful
for estimating a global state based on multiple mobile sensors with
position uncertainty. Finally, we have seen how the state estima-
tion modules of individual robots can cooperate in order to produce
more accurate and reliable state estimation.

There are several ways in which we intend to advance our game
estimation methods. First of all, we want to better understand how
the action models for the opponent players and the parameters of



the algorithms should be set to produce better results. It is also an
open question how we could use prior information such that there
are at most four opponent robots on the field or there is most of the
time an opponent in its own goal area can be used to obtain bet-
ter results. Another important aspect is that effective play requires
the team to always know where the ball is. We want to develop a
method for active ball localization. Thus whenever the team does
not know where the ball is it should look for it in a goal directed
way. One possible way to do this is to choose actions such that
the actions reduce the entropy in the probability distribution over
the ball’s position [5]. Yet another extension is to enable state es-
timation to deal with ambiguous states. This could be achieved by
running a Markov localization process in parallel. Finally, we want
to improve the perceptual capabilities of the robots through an on-
line mechanism for the adaptation of color classification.

6.2 Action Selection
The action selection is even more difficult to evaluate. A weak

indication of the coherence of coordination is the number of robots
performing go2ball at the same time. Ideally there should always
be exactly one robot going for the ball if the team knows where
the ball is. The statistics extracted from the log files of the Seattle
tell us that 98.64% of the cycles exactly one robot was going to
the ball, in 0.34% no robot, and in 1.02% of the cycles more than
one. The average duration that a robot performs go2ball or handles
the ball without being interrupted by a decision of a fellow robot
is 3.35 seconds. In only 0.25% of the time a robot that is stuck is
determined to go for the ball by the other robots. Thiese results
suggest that the task assignment algorithm together with our task
cost estimation mechanism works well.

a
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b

Figure 11: An example for intelligent cooperation in a real robot soc-
cer environment. Robot 2 approaches the ball (subfigure a) and thereby
collides with a robot of the opponent team (b). As the opponent robot
constantly pushes robot 2 is stuck and temporary not regarded by the
other robots. Thus robot 3 moves towards the ball while robot 2 tries
to get unstuck (c). Finally robot 3 dribbles towards the opponent goal
while robot 2 is staying back in its own half (d).

Figure 11 shows a kind of situation that has occurred several
times during the Robo Cup and is replayed in the AGILO simula-
tor. Robot number 2 is supposed to be the fastest to get the ball
and therefore approaches the ball (fig. 11a). Near the ball robot 2
collides with an opponent robot. Robot 2 is in a deadlock situation

and cannot move forward anymore. The only action feasible to ex-
ecute remains get unstuck. Thus robot 3 approaches the ball now
(fig. 11b) Having reached the ball robot 3 dribbles towards the op-
ponent goal while robot 2 is moving backwards (fig. 11c): Further
on robot 2 is no more stuck and robot 3 is still dribbling. Buck et al.
[3] present more conclusive results obtained in the Robo Cup sim-
ulation league that show that the team performance using the task
assignment algorithm degrades gracefully as the corruption level
for communication is increased. They also show how the task as-
signment algorithm achieves more complex patterns of cooperation
such as double passes.

We have also evaluated our learned hybrid multi robot naviga-
tion system in the AGILO robot simulator. To do so, we have
compared its performance with the performance obtained by the
individual navigation methods. The results are shown in table 1.
We have performed a bootstrapping t-test based on 1000 different
joint navigation tasks to empirically validate that the hybrid naviga-
tion planner performs better than the individual planning methods.
Based on these experiments we obtained a 99.9% confidence in
the test set (99.9% in the training set) that the hybrid method out-
performs the potential field method (with its respective parameter-
ization). The respective probabilities for the shortest path method
are 99.9% (99.9%), for the maximum clearance method 99.84%
(99.71%), and for the viapoint method 96.25% (94.62%). This val-
idates our hypothesis that the hybrid planner dominates the other
planning methods with statistical significance ( ������� ).

Algorithm Mean time (1000 problems)� /sec significance ��� - ��� �
	 � 

Simple Potential Field 15.92 99.99 %
Shortest Path 13.14 99.99 %
Maximum Clearance 12.31 99.84 %
Viapoint 11.95 96.25 %
Decision Tree 11.44

Table 1: Results of four evaluated algorithms and the trained decision
tree. The significance level is based on a t-test.

Besides the performance the frequency with which the AGILO
system selects actions is also impressive. There are on average 4-
5 action selection cycles per second despite the sophistication of
task cost prediction and multi robot navigation. This speed can be
reached because the results of complex computations are estimated
through neural networks and decision trees that have been trained
using experience-based learning mechanisms.

So far our plan-based control mechanisms have only be applied
in the AGILO robocup simulator and not yet in extensive experi-
ments. Our next steps in the advancement of our action selection
mechanisms are the autonomous learning of more complex learn-
ing tasks, such as dribbling towards the opponent goal and shoot-
ing in the right moment in the right corner and getting the ball away
from the wall. Another important issue is action selection under un-
certainty. The skills that we have learned so far were all acquired
with the simulator using a perfect world model. We believe that we
can learn much better skills if our simulator can also learn proba-
bilistic models of the AGILO state estimation processes. To learn
such a probabilistic perception model we need however a ceiling
camera that records the ground truth that the estimated states can be
compared to. Finally, we believe that in order to acquire more skills
more autonomously it is crucial to better integrate learning mech-
anisms into robot control languages. To this end we extend our
plan-based control language RPL such that it is capable of declara-



tively specifying learning problems within the control routines.

7. RELATED WORK
The research described in this paper can be discussed with re-

spect to several dimensions. Within the robot soccer application
we can compare it with the control techniques employed by other
mid-size teams and those employed by teams playing in the simu-
lator and the small size league. In addition, we will compare the
system with other autonomous control systems that share the con-
trol principles that they apply.

In the mid-size league most competing teams apply behavior-
based control techniques and avoid the problem of estimating the
complete game state with the CS Freiburg team being a notable ex-
ception [11]. However, because the Freiburg team is using Laser
range finders as their primary sensors, which are very accurate
in depth estimation, they get away with a simpler state estima-
tion mechanism in which can assume almost perfect sensors with
known positions. Most other mid-size teams coordinate the play
of their team mates by negotiating or assigning roles to the differ-
ent players [8]. In contrast, in the AGILO team the coordination is
implicit and based on a sophisticated cost estimate for task assign-
ment. The AGILO team is also distinguished in the mid-size league
with respect to its extensive use of learning and plan-based control
mechanisms. Technologically, the AGILO software shares control
mechanisms with teams in the simulator league. In particular, it
applies similar learning techniques as the Karlsruhe Brainstormers
[15]. The use of such techniques in autonomous robot soccer is
much more difficult due to the difficulties in obtaining sufficient
training data, high variances in physical effects, extremely noisy
sensors, and the incompleteness of available information.

With respect to the software architecture and employed software
techniques the AGILO control software shares commonalities with
autonomous robotic agents such as the extended RHINO control
system [2]. The RHINO system, too, makes extensive use of prob-
abilistic state estimation, has a default mechanism for action se-
lection, and plan-based control mechanism. The AGILO software
extends this work in that it applies these techniques to a multi robot
control problem in a very dynamic and adversary environment.

8. CONCLUSION
This paper has described and discussed the control software of

the AGILO autonomous robot soccer team. Similar to advanced
autonomous robotic agents acting in human working environments
the AGILO team employs sophisticated state estimation and control
techniques, including experience-based learning and plan-based con-
trol mechanisms.

We have shown that the application of probabilistic state estima-
tion techniques together with information exchange between the
robots results in game state estimators that are capable of estimat-
ing complete states including robots with surprising accuracy and
robustness even with restrictive and noisy camera systems. We
have also seen that the amble use of experience-based learning has
resulted in powerful control mechanisms, including competent co-
ordination, with little runtime computational cost. Finally, we have
explained how plan-based control mechanisms will enhance the
robot’s playing skills by enabling the robots to perform complex
soccer plays. The results of the 2001 robot soccer world cham-
pionship have shown that these techniques allow for competitive
soccer play despite an inferior hardware equipment.
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