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Abstract

In many robot applications, autonomous robots must be ca-
pable of localizing the objects they are to manipulate. In
this paper we address the object localization problem by fit-
ting a parametric curve model to the object contour in the
image. The initial prior of the object pose is iteratively re-
fined to the posterior distribution by optimizing the separa-
tion of the object and the background. The local separation
criteria are based on local statistics which are iteratively
computed from the object and the background region. No
prior knowledge on color distributions is needed. Experi-
ments show that the method is capable of localizing objects
in a cluttered and textured scene even under strong varia-
tions of illumination. The method is able to localize a soccer
ball within frame rate.

1. Introduction
In many robot applications, autonomous robots must be ca-
pable of localizing the objects they are to manipulate. Robot
soccer provides a good case in point. Autonomous soccer
robots must at least localize the ball and opponent robots.
In all RoboCup leagues image-based object localization is
currently considerably simplified by two restrictions: 1. all
objects on the pitch have a distinctive color. 2. the illu-
mination is constant and roughly homogeneous. Due to
these restrictions, classes of objects (e.g. robots, ball, lines,
color markers, goals) can roughly be identified by color
classification. To the best of our knowledge, all robot soc-
cer teams participating in RoboCup use color classification
[30, 33, 14, 16, 6, 3]. However, color classification is usu-
ally not feasible in a natural scene. In this paper we consider
a natural scene to be a scene where the colors of objects and
the illumination are not restricted and where texture, clutter,
shading, and specularity complicate image interpretation.

Especially in natural scenes, knowledge of the object
shape is very helpful and sometimes necessary. Parametric
curve models also known as deformable models, snakes or
active contours [17], have been proven as powerful means
for incorporating shape knowledge into computer vision al-
gorithms. For example, in order to segment a bone in a
medical image or in order to visually track a person, mod-
els describing the possible contours of the objects of interest
are used [25, 19, 5]. The parameters of the models specify
object properties such as the pose, size, and shape. By fit-
ting parametric curve models to the image data problems
like self-localization and localization of other objects can

Figure 1: The proposed method correctly localizes the ball
despite the partial occlusion. (red: initialization, white: es-
timated ball contour)

be addressed [11].
In this paper we propose a novel and fast method for fit-

ting parametric curve models to image data. We estimate
the relative position of objects (soccer ball, mug) observed
by an autonomous mobile robot. We think that this work
could be an important contribution towards the goal of play-
ing robot soccer in a natural environment.

1.1 Related Work

The body of related work can be roughly classified into
three categories: (i)edge-based methods, (ii) region-
based methods, and (iii) methods integrating edge-based
and region-based criteria.

(i) Edge-based methodsrely on discontinuities of im-
age data. Methods for different edge-profiles, i.e. types of
discontinuities, exist (e.g. step-edge [2, 27, 7], roof-edge
[2, 27], others [2, 27]). The problem of edge-based meth-
ods is that in practice usually the edge-profile is not known.
Furthermore, the profile often varies heavily along the edge
caused by e.g. clutter, shading, and texture. Due to these
difficulties, usually a simple step-edge is assumed and the
edge detection is performed based on a maximum image
gradient. In Fig. 5a the color values on either side of the
object contour are not constant even within a small vicin-
ity. Hence, methods maximizing the image gradient have
difficulties to separate the mug and the background.

(ii) Region-based methodssuch as [35, 9] rely on the
homogeneity of spatially localized features (e.g. RGB val-
ues). The underlying homogeneity assumption is that the
features of all pixels within one region are statistically in-
dependently distributed according to the same probability
density function. However often this assumption does not



hold. In Fig. 5a the distributions of the RGB values of
the foreground and the background depend on the locations
within the image.

(iii) Integrating methods aim to overcome the indi-
vidual shortcomings of edge-based and region-based ap-
proaches by integrating both approaches [31, 28, 8, 15].
These methods seek a tradeoff between an edge-based crite-
rion, e.g. the magnitude of the image gradient, and a region-
based criterion evaluating the homogeneity of the regions.
However, it is questionable whether a tradeoff between the
two criteria yields reasonable results when both the homo-
geneity assumption and the assumption regarding the edge
profile do not hold as in Fig. 5a.

Model-based methods optimize the fit between the
model and the image data.Global optimization methods
like dynamic programming [1] and Monte Carlo optimiza-
tion (particle filters, condensation algorithm [5]) are very
successfully used (e.g., for tracking). However, dynamic
programming requires a discretization of the search space,
which leads to a limited accuracy, and particle filters show
a very slow convergence if the sensor noise is low [32].

Local optimization methods may achieve a fast, i.e.
quadratic, convergence. Approaches aiming to increase the
area of convergence such as [21, 34] are edge-based. For
methods maximizing the gradient, the area of convergence
depends on the window size used to compute the spatial
derivatives. Scale-space theory provides means for auto-
matic scale selection [20]. However, blurring the image data
eliminates useful high frequency information. Several seg-
mentation methods integrate different image cues such as
texture and color or brightness [4, 22, 23, 31].

The Contracting Curve Density (CCD) algorithm [12]
does not assume a fixed separation criterion but learns from
the model and the image data how to separate locally ad-
jacent regions. By simultaneously fitting a distribution of
curve to the image a big area of convergence and a fast op-
timization is achieved.

1.2 Main Contributions

The CCD algorithm as proposed in [12] achieves high ro-
bustness and accuracy in natural scenes. However, the
method as proposed in [12] is not optimized for the speed
requirements of a mobile robot. Here we present a fast ver-
sion of the CCD algorithm which can be used for real robot
control. While in the original version all pixels in the vicin-
ity of the curve are used here we use just a few carefully
selected pixels. Furthermore, we utilize some fast approx-
imations. The modifications proposed in this paper lead to
a speed-up of usually much more than 100, depending on
the image resolution. This makes real-time object tracking
based on the CCD algorithm feasible.

Overview of the paper: the remainder of this paper is
organized as follows: in section 2 an overview of the Con-
tracting Curve Density (CCD) algorithm is given. Sections
3 and 4 describe how the two main steps of the CCD al-
gorithm can be performed efficiently. In section 5 the ball

contour is modeled as a radially distorted projection of a
sphere. Section 6 contains an experimental evaluation and
finally in section 7 a conclusion is given.

2. Overview of the Contracting Curve
Density (CCD) Algorithm

The CCD algorithm estimates the parameters of curve mod-
els from image data. The CCD algorithm can roughly be
characterized as an extension of the EM algorithm [10] us-
ing additional knowledge. The additional knowledge con-
sists of: (i) a curve model, which describes the set of pos-
sible boundaries between adjacent regions, and (ii) a model
of the imaging process. The CCD algorithm, depicted in
Fig. 2, performs the iteration of two steps, which roughly
correspond to the two steps of the EM algorithm:

1. Local statistics of image data are learnedfrom the
vicinity of the curve. These statistics locally characterize
the two sides of the edge curve.2. From these statistics
theestimation of the model parameters is refinedby op-
timizing the separation of the two sides. In the next iteration
step this refinement in turn leads in to an improved statisti-
cal characterization of the two sides. During the process the
uncertainty of the model parameters decreases. Thereby,
the probability density of the curve in the image contracts
to a single edge estimate. Therefore, we call the algorithm
Contracting Curve Density (CCD) algorithm.

Input: the input of the CCD algorithm consists of the
image dataI� and the curve model. The image data are lo-
cal features, e.g. RGB values, given for each pixel of the
image. The curve model consists of two parts: 1.) a differ-
entiable curve functionc describing the model edge curve
in the image as a function of the model parameters�. The
model parameters are the parameters to be estimated, for ex-
ample the 3-D pose parameters of an object, 2.) a Gaussian
a priori distributionp(�) = p(� j m�

�
;��
�
) of the model

parameters�, defined by the meanm�
�

and the covariance
�
�
�

. (The superscript� indicates input data.) Depending on
the application the quantitiesm�

�
and��

�
may be obtained

for example by Monte Carlo optimization, by a human ini-
tialization, or from prediction over time.

Output: the output of the algorithm consists of the es-
timatem� of the model parameters� and the covariance
�� describing the uncertainty of the estimate. The estimate
m� and the covariance�� define a Gaussian approxima-
tion p(� jm�;��) of the posterior densityp(� j I�).

Initialization: the estimatem� of the model parameters
and the associated covariance�� are initialized using the
meanm�

�
and covariance��

�
of the a priori distribution.

The factorc1, e.g. c1 = 9, increases the initial uncertainty
and thereby enlarges the capture range of the CCD algo-
rithm. The following two sections describe the two basic
steps of the fast version of the CCD algorithm.



Input : image dataI�, differentiable curve functionc, mean
m
�
�

and covariance��
�

Output : estimatem� of model parameters and associated
covariance��
Initialization: meanm� =m

�
�

, covariance�� = c1 ���
�

repeat

1. learn local statisticsof image data from the vicinity
of the curve

(a) compute pixelsv in vicinity V of the image curve
from c,m� and��
8v 2 V compute vague assignmentav(m�;��)
to the sides of the curve

(b) 8v 2 V compute local statisticsSv of image data
I
�
V

2. refine estimationof model parameters

(a) update meanm� by performing one iteration
step of MAP estimation:

m� = argmin
m�

�2(m�) with

�2(m�) = �2 ln[p(IV = I
�
V j aV(m�;��);SV)�

� p(m� jm�
�
;��
�
)]

(b) updated covariance�� from Hessian of
�2(m�)

until changes ofm� and�� are small enough
Post-processing: estimate covariance�� from Hessian of
�2(m�)
return meanm� and covariance��

Figure 2: The CCD algorithm iteratively refines a Gaussian
a priori densityp(�) = p(� j m�

�
;��
�
) of model param-

eters to a Gaussian approximationp(� j m�;��) of the
posterior densityp(� j I�).

3. Learn Local Statistics (Step 1)
In section 3.1 we describe how the pixels within the vicinity
of the expected image curve are determined. For the result-
ing pixels local statistics of the image data are derived in
section 3.2.

3.1 Determine Pixels in the Vicinity of the
Curve (Step 1a)

Contrary to the original version of the CCD algorithm [12]
here we use just a few carefully chosen pixels in the vicinity
of the curve. The setV contains just pixels lying on specific
perpendiculars to the expected image curve, see Fig. 3b.
This causes a speed-up for two reasons: 1. the number of
pixels taken into account is reduced. 2. for all pixels ly-
ing on the same perpendicular many quantities have to be

computed only once per perpendicular.
The idea of taking only pixels into account which lie on

specific perpendiculars is widely used in the tracking litera-
ture, e.g. [5]. However, here we do not use all pixels on the
perpendicular but we use at mostMmax (e.g. Mmax=21)
pixels per perpendicular. Hence, for an iteration step of our
method the time complexity is limited independent of the
image resolution. This allows to process high resolution
images in a limited time.

3.1.1 Choosing Pixels

The pixels in the vicinity of the curve are chosen accord-
ing to the local uncertainty of the curve. We describe the
curve by a model curve function, similarly to [17] or [5].
The model curve functionc(s;�) maps the model param-
eters� and a parameters onto a curve point. The pa-
rameters monotonously increases as the curve is traversed.
Hence,s specifies a particular point on the curve. Contrary
to [5], c does not have to be linear in the model parame-
ters� which is essential for many applications. The set

 = fs1; :::; sMg of values fors specifies the set of perpen-
diculars to the image curve. Each perpendicular is defined
by the curve pointCi = c(si;m�) and the corresponding
normal vectorni. The valuessi 2 
 are usually chosen
such that the perpendiculars are equally spaced along the
curve.

The Gaussian distribution of model parameters
p(� jm�;��) and the model curve functionc(s;�)
define a probability distribution of the curve in the image.
The pixels are chosen according to the local uncertainty of
the curve in the direction perpendicular to the curve. This
uncertainty can be efficiently estimated by approximating
the curvec(s;�) in the vicinity of the point(si;m�)
by a linear Taylor series. The error of the approximation
decreases if the covariance�� decreases. This is the
reason why our method achieves high accuracy despite
local linear approximations. For the linearization the
intersection of the curve and the perpendicular is Gaussian
distributed. The mean point isCi = c(si;m�) and the
uncertainty, i.e. standard deviation,�i of the curve in the
direction of the perpendicular is given by

�i =

q
jjJ?i �Ajj2 + b�2i (1)

where J
?
i = n

T
i � Ji: (2)

The matrix Ji denotes the Jacobian ofc in the point
(si;m�) andJ?i is the corresponding Jacobian for the di-
rection perpendicular to the curve. The columns of the ma-
trix A are the principle axis defined by the covariance ma-
trix ��. The matrixA can be obtained by

A =
�p

�1 � e1; :::;
p
�N� � eN�

�
(3)

where�1; :::; �N� are the eigenvalues ande1; :::; eN� are
the corresponding eigenvectors of��. The parameterb�i in



equation (1) incorporates other uncertainties apart from the
uncertain model parameters�. Such uncertainties are for
example uncertain internal camera parameters, uncertain-
ties in the model, or image blurring caused by the imaging
device. Usually for the first iterationsb�2i is very small com-
pared tojjJ?i �Ajj2.

The pixelsvij along a perpendiculari are chosen equally
spaced within an interval, see Fig. 3b. The size of the inter-
val depends linearly on the corresponding uncertainty�i.
In order to avoid indices of indices we define for all vari-
ablesX indexed by a pixelvij Xij := Xvij . We denote the
center points of pixelsvij by vij .

3.1.2 Assigning Pixels to Sides of the Curve

The distribution of image curves vaguely assigns pixels in
the vicinity of the assumed curve to one side of the curve.
The vague assignmenta = (a1; a2) of a pixels consists of
two probabilities. The first elementa1 is the probability of
the pixel to lie on side 1 of the curve. The second element
a2 is the corresponding expression for side 2 given bya2 =
1 � a1. For the sake of efficiency, here the photosensitive
area of the pixel is not taken into account, contrary to [12].
Here a pixel is simply modeled as a point, i.e. the center
point. Based on the local perpendicular uncertainty�i of the
curve the vague assignmentaij for pixelvij can be obtained
by

aij = (aij1; 1� aij1) where (4)

aij1 =
1

2
� erf

�
dijp
2 � �i

�
+

1

2
: (5)

Hereerf (�) denotes the error function anddij is the signed
distance between the pixel centervij and the expected curve
c(s;m�). Using again the linear approximation of the
curve the signed distancedij can be obtained by

dij = n
T
i � (vij �Ci): (6)

Fig. 3c depicts the vague assignments to the background
for two iteration steps. The pixels along a perpendicular
can roughly be classified into two categories: 1.) pixels
which are assigned to one side of the curve with high cer-
tainty. These pixels are used in the next section in order
to estimate local statistics characterizing the corresponding
side. 2.) pixels which are assigned with low certainty. In
step 2 (see section 4) the estimation of the model parame-
ters is refined such that these pixels are assigned to the side
they fit best. The fitting criterion is based on the local image
statistics.

3.2 Compute Local Statistics (Step 1b)

For the two sides separated by the curve local statistics of
the image features are learned from the pixels which are as-
signed to one side with high certainty. We assume that the
local statistical properties of both sides may vary along the

initialization after 2 iterations
a.) I�ij , image data with superimposed mean curve

b.) V , set of pixels taken into account

c.) aij1, vague assignments for side 1 (background)

d.) wij1, weights used in order to estimate
the local statistics of side 1 (background)

Figure 3: Within two iterations the model contour (black) is
accurately aligned to the image contour. (red: initialization)

curve. The computation of local statistics is done in two
steps: 1.) local statistics are computed for each perpendicu-
lar independently. 2.) then the local statistics are smoothed
along the curve.

3.2.1 Statistics for one Perpendicular

The local statistics computed here characterize the two sides
of the curve in the vicinity of the curve. This statistics de-
fine local Gaussian distributions which are used in step 2 in
order to separate the two sides. For the two sidess 2 f1; 2g
weighted statistical moments of the image featuresI (e.g.
RGB values) are computed

bwis =
X
j2Vi

wijs (7)

cMis =
X
j2Vi

wijs Iij (8)

cM2

is =
X
j2Vi

wijs IijI
T
ij : (9)

HereVi denotes the set of all pixelsvij belonging to the
perpendicular indexed byi. The scalarswijs are weights
specifying to which extend a pixelvij is taken into account
for sides. For the choice of the weightswijs two conflict-
ing considerations have to be taken into account. 1.) The



statistical dependency between two pixels usually decreases
with the distance between the pixels. From this follows, lo-
cal statistics should be computed from pixels close to the
curve. 2.) However, pixels close to the curve are likely to
belong to the wrong side. We compute a heuristic compro-
mise by

wijs = Ep(dij ; �i) � Es(aijs): (10)

The functionEp(dij ; �i) evaluates the proximity of the
pixel to the curve andEs(aijs) evaluates the probability of
the pixel to belong to the desired sides. ForEp(dij ; �i)
we choose a zero mean Gaussian with a standard deviation
depending linearly on�i. ForEs(aijs) we choose

Es(aijs) = max
�
0; [(aijs � C)=(1� C)]6

�
(11)

with C 2 [0; 1[. The functionEs is monotonously increas-
ing and holds8aijs 2 [0; C] : Es(aijs) = 0 andEs(1) = 1.
In our experiments we useC = 0:6.

3.2.2 Smoothing Statistics along the Curve

In order to exploit statistical dependencies between pix-
els on different perpendiculars the statistical momentsbwis,cMis, andcM2

is computed for each perpendicular are blurred
along the curve. We use an exponential filter since it al-
lows for fast blurring with a time complexity independent
of the window size. From the resulting blurred moments
wis,Mis, andM2

is the meanmis and covariance�is spec-
ifying local Gaussian distributions are obtained by

mis = Mis=wis (12)

�is = M
2

is=wis �mism
T
is + �I (13)

where�I is a scaled identity matrix with very small� used
in order to avoid singularity for degenerated distributions.

4. Refine the Estimation of Model Pa-
rameters (Step 2)

In step 2 the estimation of the model parameters is refined
using the vague pixel assignments and the local statistics
obtained in step 1. Due to space limitation, unfortunately
step 2 cannot be explained in detail here. For the basic idea
and a mathematical description the reader is referred to [12].
Similarly to step 1, the speed-up in step 2 is achieved by
mainly three modifications: 1.) with the reduced setV of
pixels taken into account (see step 1) the overall compu-
tational load is reduced. 2.) for pixels lying on the same
perpendicular several quantities have to be computed only
once per perpendicular. 3.) by modeling a pixel as a point,
integration over the photosensitive area of the pixel can be
omitted.

5. Modeling the Ball Contour
In this section the contour of the ball is described (modeled)
as a function of the ball position. In this modeling process

optical center

image plane

optical axis

ball

l1 l2

l1 < l2

Figure 4: Projection of the ball into the image plane: the
projection of the ball’s center point does not yield the center
of the ball contour

knowledge of the ball (the object of interest) and the imag-
ing device is incorporated. Here the ball is modeled as a
sphere with known radius. We use a camera with known
internal and external camera parameters. The method pro-
posed here is developed for our non-omnidirectional vision
system. However, the method can easily be adapted to
omnidirectional vision systems which are quite popular in
robotic soccer, e.g. [13, 24, 26].

We denote the center point of the ball in the coordinate
system of the observing robot byMr. We distinguish two
cases: 1.) in the first case the ball is assumed to lay on
the floor. Hence the center pointMr = (x; y; r)T of the
ball has two degrees of freedom, namelyx andy. Thez-
coordinate is given by the radiusr of the ball. 2.) in the
second case we assume the ball may fly, i.e. not lay on
the floor which sometimes happens in robotic soccer. In
this case the ball position has three unknown coordinates:
M = (x; y; z)T . While the second case is more general, it
requires an optimization for more parameters and tends to
be less precise, if the ball is on the floor. By� we denote
the unknown parameters of the ball positionMr (for the
first case� = (x; y)T , for the second case� = (x; y; z)T ).

In the following the relation between� and the pixel
coordinates of the ball contour is derived. First the center
point of the ball has to be expressed in camera coordinates
Mc:

Mc = R � (Mr � t) (14)

whereR andt specify the orientation and location of the
camera. The set of tangent lines to the sphere (the ball)
passing through the optical center of the camera define a
cone. As known, the intersection of the cone with the image
plane yields an ellipse [29], (if the ball is visible). Note the
intersection is a circle only if the center point of the sphere
lies on the optical axis of the camera. In all other cases the
projection of the center point is not the center point of the
ball contour, see Fig. 4. The set of contour points can be
described in undistorted image coordinatesu by

u(s) =mi + cos(s) � a1 + sin(s) � a2 (15)

wherem is the center,a1 anda2 are the two axis of the
ellipse in undistorted image coordinates. The angles 2



a.) b.)

Figure 5: Fitting a mug (modeled as a cylinder) into the
image: a.) Despite the clutter, strong texture, and shading
the proposed method correctly fits the model to the contour
in the image (red: initialization, black: fitted contour). b.)
Pixels used in the last iteration step.

[��; :::; �[ specifies a particular point on the ellipse. Our
lens causes substantial radial distortions. According to Lenz
et al. [18] the distorted coordinatesd can be approximated
by

d = (dx; dy)
T = 2u=(1 +

p
1� 4�juj2) (16)

where� is the distortion parameter of the lens. The pixel
coordinatesc of a point can be obtained by

c = (dx=Sx + Cx; dy=Sy + Cy)
T (17)

whereSx andSy define the pixel size andCx andCy spec-
ify the center point of the camera.

6. Experiments
In our experiments we apply the proposed method to sev-
eral scenes. In Fig. 5 the contour of a mug is fitted to the
image data. The proposed method converges to the correct
solution despite the strong clutter, texture, and shading.

In Fig. 3 the position of a ball is estimated. For close up
view such as in Fig. 3 the average error is just a few mil-
limeters, depending on the accuracy of the camera calibra-
tion. For this simple object and with the quite good initial-
ization 2 iterations are sufficient. The computational time
per iteration is about 18 ms on a 500 MHz computer.

In order to evaluate the performance for a partially oc-
cluded ball, we took two images with the same ball position,
one with partial occlusion, Fig. 1, and one without occlu-
sion, Fig. 6. The ball estimates of the two images differ by
2.2 cm, which is just 2.6% of the ball distance. However, the
number of necessary iterations is about 5 times higher in the
partially occluded case. Furthermore, in the non-occluded
case the area of convergence is clearly bigger. The CCD al-
gorithm not only yields an estimate of the ball position, but
also a covariance matrix describing the expected uncertainty
of the estimate. For the partially occluded ball the expected
uncertainty is about three times higher than for the not oc-
clude case. This allows a reasonable data fusion with other
sensor data.

Figure 6: Same ball position as in Fig. 1: the two estimates
differ by just 2.2 cm or 2.6% (red: initialization, white: es-
timated ball contour).

Figure 7: The mainly white non-RoboCup ball is accu-
rately segmented in front of a white-grey background. This
is hardly possible with color labeling (red: initialization,
black: estimated ball contour).

Fig. 7 shows that the CCD algorithm can separate re-
gions with similar color distributions. In the next experi-
ment we vary the background of the ball and the illumina-
tion, see Fig. 8. For the five investigated images the stan-
dard deviation of the ball estimates is 1.1 cm which is 1.6%
of the distance. Unfortunately, we do not have a sufficiently
precise ground truth to compare our results with.

Figs. 8 and 5 show that the CCD algorithm can cope
with strong texture even if the underlying distribution of the
RGB values is not Gaussian but multi-modal. However, not
all textures can directly be separated by the CCD algorithm.
For example in order to separate two regions with the same
texture but different orientation of the texture, a preprocess-
ing step has to be applied yielding feature vectors which
are sensitive to the orientation of the texture. The speed-up
of the fast CCD algorithm depends mainly on the reduc-
tion of the pixels taken into account. In our experiments the
fast CCD algorithm was more than 100 times faster than the
original CCD algorithm.

7. Conclusion
We have proposed a novel and fast method for fitting para-
metric curve models to image data and we have applied this
method to the problem of localizing objects observed by a
mobile autonomous robot. Our method does not assume
any given color distribution or specific edge-profile nor do
we use any thresholds. We use local criteria based on local



Figure 8: The strong variations of background and illumi-
nation cause just small variations of the ball estimates. For
the five images the standard deviation of the ball estimates
is 1.1 cm which is 1.6% of the distance.

image statistics in order to separate adjacent regions.
We have shown that the method achieves high robustness

and accuracy even in the presence of strong texture, clut-
ter, partial occlusion, and severe changes in illumination.
Knowledge of the object of interest and the imaging sensor
is explicitly modeled and exploited. This allows a straight-
forward adaption to other imaging devices and other prob-
lems. Due to the here proposed modifications of the CCD
algorithm the method runs in real time for models with a
small number of parameters, e.g. the ball. Since the method
provides a confidence region for the estimates, a fusion with
other uncertain sources of information can easily be accom-
plished, e.g. in the case of multiple observers.
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