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Abstract

In many robot applications, autonomous robots must be ca-
pable of localizing the objects they are to manipulate. In
this paper we address the object localization problem by fit-
ting a parametric curve model to the object contour in the
image. The initial prior of the object pose is iteratively re-
fined to the posterior distribution by optimizing the separa-
tion of the object and the background. The local separation
criteria are based on local statistics which are iteratively Figure 1: The proposed method correctly localizes the ball
computed from the object and the background region. No despite the partial occlusion. (red: initialization, white: es-
prior knowledge on color distributions is needed. Experi- timated ball contour)
ments show that the method is capable of localizing objects
in a cluttered and textured scene even under strong varia-
tions of illumination. The method is able to localize a soccer
ball within frame rate. be addressed [11].

In this paper we propose a novel and fast method for fit-
ting parametric curve models to image data. We estimate
the relative position of objects (soccer ball, mug) observed

In many robot applications, autonomous robots must be ca-PY @n autonomous mobile robot. We think that this work
pable of localizing the objects they are to manipulate. Robot €0U!d be animportant contribution towards the goal of play-
soccer provides a good case in point. Autonomous soccefd robot soccer in a natural environment.
robots must at least localize the ball and opponent robots.
In all RoboCup leagues image-based object localization is] 1  Related Work
currently considerably simplified by two restrictions: 1. all
objects on the pitch have a distinctive color. 2. the illu- The body of related work can be roughly classified into
mination is constant and roughly homogeneous. Due tothree categories: (ipdge-based methods(ii) region-
these restrictions, classes of objects (e.g. robots, ball, linesbased methodsand (iii) methods integrating edge-based
color markers, goals) can roughly be identified by color and region-based criteria
classification. To the best of our knowledge, all robot soc- (i) Edge-based methodsely on discontinuities of im-
cer teams participating in RoboCup use color classificationage data. Methods for different edge-profiles, i.e. types of
[30, 33, 14, 16, 6, 3]. However, color classification is usu- discontinuities, exist (e.g. step-edge [2, 27, 7], roof-edge
ally not feasible in a natural scene. In this paper we consider[2, 27], others [2, 27]). The problem of edge-based meth-
a natural scene to be a scene where the colors of objects andds is that in practice usually the edge-profile is not known.
the illumination are not restricted and where texture, clutter, Furthermore, the profile often varies heavily along the edge
shading, and specularity complicate image interpretation. caused by e.g. clutter, shading, and texture. Due to these
Especially in natural scenes, knowledge of the object difficulties, usually a simple step-edge is assumed and the
shape is very helpful and sometimes necessary. Parametriedge detection is performed based on a maximum image
curve models also known as deformable models, snakes ogradient. In Fig. 5a the color values on either side of the
active contours [17], have been proven as powerful meansobject contour are not constant even within a small vicin-
for incorporating shape knowledge into computer vision al- ity. Hence, methods maximizing the image gradient have
gorithms. For example, in order to segment a bone in adifficulties to separate the mug and the background.
medical image or in order to visually track a person, mod- (i) Region-based methodsuch as [35, 9] rely on the
els describing the possible contours of the objects of interesthomogeneity of spatially localized features (e.g. RGB val-
are used [25, 19, 5]. The parameters of the models specifyues). The underlying homogeneity assumption is that the
object properties such as the pose, size, and shape. By fitfeatures of all pixels within one region are statistically in-
ting parametric curve models to the image data problemsdependently distributed according to the same probability
like self-localization and localization of other objects can density function. However often this assumption does not

1. Introduction
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hold. In Fig. 5a the distributions of the RGB values of contour is modeled as a radially distorted projection of a
the foreground and the background depend on the locationsphere. Section 6 contains an experimental evaluation and
within the image. finally in section 7 a conclusion is given.
(i) Integrating methods aim to overcome the indi-
vidual shortcomings of edge-based and region-based ap-
proaches by integrating both approaches [31, 28, 8, 15].
These methods seek a tradeoff between an edge-based crit€, Overview of the Contracting Curve
rion, e.g. the magnitude of the image gradient, and a region- : :
based criterion evaluating the homogeneity of the regions. DenSIty (CCD) Algorlthm
However, it is questionable whether a tradeoff between the
two criteria yields reasonable results when both the homo-The CCD algorithm estimates the parameters of curve mod-
geneity assumption and the assumption regarding the edgels from image data. The CCD algorithm can roughly be
profile do not hold as in Fig. 5a. characterized as an extension of the EM algorithm [10] us-
Model-based methods optimize the fit between the ing additional knowledge. The additional knowledge con-
model and the image dat#lobal optimization methods  sists of: (i) a curve model, which describes the set of pos-
like dynamic programming [1] and Monte Carlo optimiza- sible boundaries between adjacent regions, and (ii) a model
tion (particle filters, condensation algorithm [5]) are very of the imaging process. The CCD algorithm, depicted in
successfully used (e.qg., for tracking). However, dynamic Fig. 2, performs the iteration of two steps, which roughly
programming requires a discretization of the search spacegorrespond to the two steps of the EM algorithm:
which leads to a limited accuracy, and particle filters show 1 | gcal statistics of image data are learnedrom the
a very slow convergence if the sensor noise is low [32].  yicinity of the curve. These statistics locally characterize
Local optimization methods may achieve a fast, i.e. the two sides of the edge curve. From these statistics
quadratic, convergence. Approaches aiming to increase thgne estimation of the model parameters is refinedy op-
area of convergence such as [21, 34] are edge-based. FQfmizing the separation of the two sides. In the next iteration
methods maximizing the gradient, the area of convergencestep this refinement in turn leads in to an improved statisti-
depends on the window size used to compute the spatialca| characterization of the two sides. During the process the
derivatives. Scale-space theory provides means for autoyncertainty of the model parameters decreases. Thereby,
matic scale selection [20]. However, blurring the image data the probability density of the curve in the image contracts

eliminates useful high frequency information. Several seg- g 3 single edge estimate. Therefore, we call the algorithm
mentation methods integrate different image cues such ascontracting Curve Density (CCD) algorithm.

texture and color or brightness [4, 22, 23, 31].
The Contracting Curve Density (CCD) algorithm [12]
does not assume a fixed separation criterion but learns fro

Input: the input of the CCD algorithm consists of the
nimage datd* and the curve model. The image data are lo-
th del and the i data how t te locall OI_.(:al features, e.g. RGB values, given for each pixel o_f the

e mode: and fhe Image data now fo separate jocally a image. The curve model consists of two parts: 1.) a differ-

jacent regions. By simultaneously fitting a distribution of . . >
curve to the image a big area of convergence and a fast op?nt'ab!e curve functlon. describing the model edge curve
timization is achieved. in the image as a function of the model param_e@.ré’he
model parameters are the parameters to be estimated, for ex-
ample the 3-D pose parameters of an object, 2.) a Gaussian
1.2 Main Contributions a priori distributionp(®) = p(® | mj%, X%) of the model
_ ) ) ) parameter®, defined by the meam}, and the covariance
The CCD algorithm as proposed in [12] achieves high ro- sy« " (The superscript indicates input data.) Depending on
bustness and accuracy in natural scenes. However, thene application the quantitie}, andX; may be obtained
method as proposed in [12] is not optimized for the speed o example by Monte Carlo optimization, by a human ini-
requirements ofa mo_blle rob(_)t. Here we present a fast Ver-tialization, or from prediction over time.
sion of the CCD algorithm which can be used for real robot ) .
control. While in the original version all pixels in the vicin- _ OUtput: the output of the algorithm consists of the es-
ity of the curve are used here we use just a few carefully imateme of the model parameter® and the covariance
selected pixels. Furthermore, we utilize some fast approx->@ describing the uncertainty of the estimate. The estimate
imations. The modifications proposed in this paper lead to ™ and the covariancEs define a Gaussian approxima-
a speed-up of usually much more than 100, depending onfioN P(® | ms, X¢) of the posterior density(® | I*).
the image resolution. This makes real-time object tracking Initialization: the estimaténg of the model parameters
based on the CCD algorithm feasible. and the associated covariantg are initialized using the
Overview of the paper: the remainder of this paper is meanmj and covarianc& of the a priori distribution.
organized as follows: in section 2 an overview of the Con- The factore,, e.9.¢; = 9, increases the initial uncertainty
tracting Curve Density (CCD) algorithm is given. Sections and thereby enlarges the capture range of the CCD algo-
3 and 4 describe how the two main steps of the CCD al- rithm. The following two sections describe the two basic
gorithm can be performed efficiently. In section 5 the ball steps of the fast version of the CCD algorithm.
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Input: image datd™, differentiable curve function, mean computed only once per perpendicular.

m} and covarianc&y The idea of taking only pixels into account which lie on
Output: estimatemg of model parameters and associated specific perpendiculars is widely used in the tracking litera-
covarianc& ¢ ture, e.g. [5]. However, here we do not use all pixels on the
Initialization: meanme = mj, covarianc&e =c; - X3 Perpendicular but we use at makh, ., (€.9. Mmer=21)
repeat pixels per perpendicular. Hence, for an iteration step of our

o _ o method the time complexity is limited independent of the
1. learn local statisticsof image data from the vicinity  image resolution. This allows to process high resolution
of the curve images in a limited time.

(a) compute pixels in vicinity V of the image curve
frome, mg andX ¢ 3.1.1 Choosing Pixels

X)Utﬁevsic doergr:)tétteh\éacguursgs&gnmen,t(mq>, Ys) The pixels in the vicinity of the curve are chosen accord-
o _ ing to the local uncertainty of the curve. We describe the
(b) Vv € V compute local statisticS,, ofimage data  curve by a model curve function, similarly to [17] or [5].

I3, The model curve function(s, ) maps the model param-
eters® and a parametes onto a curve point. The pa-
2. refine estimationof model parameters rameters monotonously increases as the curve is traversed.

) . ) Hence,s specifies a particular point on the curve. Contrary
(a) update meamng by performing one iteration to [5], ¢ does not have to be linear in the model parame-

step of MAP estimation: ters ® which is essential for many applications. The set
mg = argmin y>(mg) With Q = {si,..., sy } Of values fors specifies the set of perpen-
me diculars to the image curve. Each perpendicular is defined
x’(ms) = —2In[p(Iy = I}, | ay(ma, Xs), Sy): by the curve poinC; = c(s;, mg) and the corresponding
v s normal vectom;. The valuess; € ) are usually chosen
p(me | mg, X5)] such that the perpendiculars are equally spaced along the
(b) updated covarianceXs from Hessian of  CUrve. , o
¥*(ms) The Gaussian distribution of model ~ parameters
p(® | mge,Xs) and the model curve functior(s, ®)
until changes ofng andX 4 are small enough define a probability distribution of the curve in the image.
Post-processing: estimate covariaie from Hessian of  The pixels are chosen according to the local uncertainty of
X} (mg) the curve in the direction perpendicular to the curve. This
return meanme and covarianc& ¢ uncertainty can be efficiently estimated by approximating

the curvec(s,®) in the vicinity of the point(s;, mg)

Figure 2: The CCD algorithm iteratively refines a Gaussian by a linear Taylor series. The error of the approximation

a priori densityp(®) = p(® | m}, $3) of model param-  decreases if the covarian@®s decreases. This is the

eters to a Gaussian approximatipf® | me, X4) of the reason why our method achieves high accuracy despite

posterior density(® | I*). local linear approximations. For the linearization the

intersection of the curve and the perpendicular is Gaussian

o distributed. The mean point €; = c(s;,ms) and the

3. Learn Local Statistics (Step 1) uncertainty, i.e. standard deviation, of the curve in the

direction of the perpendicular is given by
In section 3.1 we describe how the pixels within the vicinity

of the expected image curve are determined. For the result- ] LAl + 52 1
ing pixels local statistics of the image data are derived in i = 195 - Al +7; ()
section 3.2. where J+ = n?.7J,. (2)

. . . o The matrix J; denotes the Jacobian af in the point

3.1 Determine Pixels in the Vicinity of the (si,mg) andJ; is the corresponding Jacobian for the di-
Curve (Step 1a) rection perpendicular to the curve. The columns of the ma-

trix A are the principle axis defined by the covariance ma-

Contrary to the original version of the CCD algorithm [12] irix S, The matrixA can be obtained by
P

here we use just a few carefully chosen pixels in the vicinity
of the curve. The séf contains just pixels lying on specific
perpendiculars to the expected image curve, see Fig. 3b. A= (\/ A1 e,V AN, ~eNq,) 3)
This causes a speed-up for two reasons: 1. the number of

pixels taken into account is reduced. 2. for all pixels ly- where\,, ..., A\n, are the eigenvalues ard, ...,en, are
ing on the same perpendicular many quantities have to bethe corresponding eigenvectors®§. The parametet; in
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equation (1) incorporates other uncertainties apart from the| initialization | after 2 iterations
a.)I:;, image data with superimposed mean curve

uncertain model parameteds Such uncertainties are for ij
i LR

example uncertain internal camera parameters, uncertainy S ‘-\hT“ | < .

ties in the model, or image blurring caused by the imaging
device. Usually for the first iteratior® is very small com-
pared to||J; - A|[%.

The pixelsv;; along a perpendiculédrare chosen equally
spaced within an interval, see Fig. 3b. The size of the inter-
val depends linearly on the corresponding uncertainty
In order to avoid indices of indices we define for all vari-
ablesX indexed by a pixel;; X;; := X,,;. We denote the
center points of pixels;; by v;;.

B e

3.1.2 Assigning Pixels to Sides of the Curve

The distribution of image curves vaguely assigns pixels in
the vicinity of the assumed curve to one side of the curve.
The vague assignmeat= (a1, a2) of a pixels consists of
two probabilities. The first elemeny is the probability of
the pixel to lie on side 1 of the curve. The second element
as is the corresponding expression for side 2 givempy=

1 — ay. For the sake of efficiency, here the photosensitive
area of the pixel is not taken into account, contrary to [12].
Here a pixel is simply modeled as a point, i.e. the center
point. Based on the local perpendicular uncertaiptyf the
curve the vague assignmens for pixel v;; can be obtained

d.) w;;1, weights used in order to estimate
the local statistics of side 1 (background)

Figure 3: Within two iterations the model contour (black) is

by accurately aligned to the image contour. (red: initialization)
a;; = (aijl, 1-— aijl) where (4)
A 1-erf( i )+1. (5) | e |
2 V2.0 2 curve. The computation of local statistics is done in two

] . ) steps: 1.) local statistics are computed for each perpendicu-
Hereerf(-) denotes the error function auf; is the signed  |ar independently. 2.) then the local statistics are smoothed
distance between the pixel centey and the expected curve  glong the curve.
c(s,mg). Using again the linear approximation of the
curve the signed distanck; can be obtained by 3.2.1 Statistics for one Perpendicular

dij =n! - (vij — C;). (6) The local statistics computed here characterize the two sides
of the curve in the vicinity of the curve. This statistics de-
Fig. 3c depicts the vague assignments to the backgroundine local Gaussian distributions which are used in step 2 in
for two iteration steps. The pixels along a perpendicular order to separate the two sides. For the two sides{1,2}

can roughly be classified into two categories: 1.) pixels weighted statistical moments of the image featurés.g.
which are assigned to one side of the curve with high cer- RGB values) are computed

tainty. These pixels are used in the next section in order

to estimate local statistics characterizing the corresponding Wi = Z Wis 7)
. . . . . . 18 ]S

side. 2.) pixels which are assigned with low certainty. In jev:

step 2 (see section 4) the estimation of the model parame- —

ters is refined such that these pixels are assigned to the side M;s = Z wijs L (8)

they fit best. The fitting criterion is based on the local image JEVi

statistics. M2, = Z Wijs IiinTj‘ 9)
JEV:

3.2 Compute Local Statistics (Step 1b)

Here V; denotes the set of all pixets; belonging to the

For the two sides separated by the curve local statistics ofperpendicular indexed by The scalarsv;;; are weights
the image features are learned from the pixels which are asspecifying to which extend a pixe}; is taken into account
signed to one side with high certainty. We assume that thefor sides. For the choice of the weights;;; two conflict-
local statistical properties of both sides may vary along the ing considerations have to be taken into account. 1.) The
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optical axis

statistical dependency between two pixels usually decreases
with the distance between the pixels. From this follows, lo-
cal statistics should be computed from pixels close to the
curve. 2.) However, pixels close to the curve are likely to
belong to the wrong side. We compute a heuristic compro-

mise by image plane
1 <y
wijs = Ep(dij, 00) - Es(aijs). (10) /
The function E,(d;;,0;) evaluates the proximity of the o optical center
pixel to the curve and, (a;;s) evaluates the probability of ) o ] )
the pixel to belong to the desired side For E,(d;;, ;) Figure 4: Projection of the ball into the image plane: the
we choose a zero mean Gaussian with a standard deviatioRroiection of the ball's center point does not yield the center
depending linearly om;. For E,(a;;,) we choose of the ball contour
Ey(aijs) = max(0,[(ays — C)/(1 - C)°) (11)

knowledge of the ball (the object of interest) and the imag-
ing device is incorporated. Here the ball is modeled as a
sphere with known radius. We use a camera with known
internal and external camera parameters. The method pro-
. - posed here is developed for our non-omnidirectional vision
3.2.2 Smoothing Statistics along the Curve system. However, the method can easily be adapted to

In order to exploit statistical dependencies between pix- Omnidirectional vision systems which are quite popular in
els on different perpendiculars the statistical momahts ~ fobotic soccer, e.g. [13, 24, 26]. _ .
M., andM?, computed for each perpendicular are blurred _ We denote the center point of the ball in the coordinate
along the curve. We use an exponential filter since it al- SYStem of the observing robot .. We distinguish two
lows for fast blurring with a time complexity independent €3S€s: 1) in the first case the ball is assumed to lay on
of the window size. From the resulting blurred moments the floor. Hence the center poiM, = (z,y,r)" of the
wis, Mz, andM2, the meamm;, and covariancs;, spec- ball has two degrees of freedom, namehandy. The z-

ifying local Gaussian distributions are obtained by ggg{ﬁ:g aggsi: %;egst;ﬁr;hee tleigzﬁfr;gi l?l?/”'i 5 ) rigtt:];y on

m;; = M;,/ws (12) the floor which sometimes happens in robotic soccer. In
o 2, T this case the ball position has three unknown coordinates:
Bis = M /wis —mism;; + AL (13) M = (z,y,2)”. While the second case is more general, it
wherell is a scaled identity matrix with very smallused requires an optimization for more parameters and tends to
in order to avoid singularity for degenerated distributions. be less precise, if the ball is on the floor. @ywe denote
) ) ) the unknown parameters of the ball positid,. (for the
4. Refine the Estimation of Model Pa- firslt Ca;@f i (33., y)TthFtTelsng”d casg = ((;U,ﬁ,z)?)-l
n the following the relation betwee® and the pixe
rameters (Step 2) coordinates of the ball contour is derived. First the center
In step 2 the estimation of the model parameters is refinedPCint of the ball has to be expressed in camera coordinates
using the vague pixel assignments and the local statisticsMe:
obtained in step 1. Due to space limitation, unfortunately M, =R- (M, —t) (14)
step 2 cannot be explained in detail here. For the basic idea ) ) ) )
and a mathematical description the reader is referred to [12] WhereR andt specify the orientation and location of the
Similarly to step 1, the speed-up in step 2 is achieved by camera. The set of tangent lines to the sphere (the_baII)
mainly three modifications: 1.) with the reduced ¥ebf ~ Passing through the optical center of the camera define a
pixels taken into account (see step 1) the overall compu-Cone. As known, the intersection of the cone with the image
tational load is reduced. 2.) for pixels lying on the same Plane yields an ellipse [29], (if the ball is visible). Note the
perpendicular several quantities have to be computed onlyintersection is a circle only if the center point of the sphere
once per perpendicular. 3.) by modeling a pixel as a point, Iles.on.the optical axis of the camera. In all other cases the
integration over the photosensitive area of the pixel can beProjection of the center point is not the center point of the

with C € [0, 1[. The functionE, is monotonously increas-
ing and hold¥a;;s € [0,C] : Es(a;55) = 0andEg(1) = 1.
In our experiments we usg = 0.6.

omitted. ball contour, see Fig. 4. The set of contour points can be
described in undistorted image coordinaidsy
5. Modeling the Ball Contour u(s) = my + cos(s) - a, + sin(s) - as (15)

In this section the contour of the ball is described (modeled) wherem is the centera; anda, are the two axis of the
as a function of the ball position. In this modeling process ellipse in undistorted image coordinates. The angle
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Figure 6: Same ball position as in Fig. 1: the two estimates

Figure 5: Fitting a mug (modeled as a cylinder) into the differ by just 2.2 cm or 2.6% (red: initialization, white: es-
image: a.) Despite the clutter, strong texture, and shadingtimated ball contour).

the proposed method correctly fits the model to the contour
in the image (red: initialization, black: fitted contour). b.)
Pixels used in the last iteration step.

[—, ..., w[ specifies a particular point on the ellipse. Our
lens causes substantial radial distortions. Accordingto Lenz
et al. [18] the distorted coordinatdscan be approximated

by

T /
d=(de,dy)" =2u/(1+ /1 —4xluf?) (16) Figure 7: The mainly white non-RoboCup ball is accu-
where is the distortion parameter of the lens. The pixel rately segmented in front of a white-grey background. This
coordinates of a point can be obtained by is hardly possible with color labeling (red: initialization,
black: estimated ball contour).
¢ = (dy/Se + Cpydy/Sy + Cy)" (17)
whereS, andS, define the pixel size and, andC\, spec-
ify the center point of the camera. Fig. 7 shows that the CCD algorithm can separate re-
gions with similar color distributions. In the next experi-
0. Experiments ment we vary the background of the ball and the illumina-

tion, see Fig. 8. For the five investigated images the stan-
In our experiments we apply the proposed method to sev-dard deviation of the ball estimates is 1.1 cm which is 1.6%
eral scenes. In Fig. 5 the contour of a mug is fitted to the of the distance. Unfortunately, we do not have a sufficiently
image data. The proposed method converges to the corregirecise ground truth to compare our results with.
solution despite the strong clutter, texture, and shading. Figs. 8 and 5 show that the CCD algorithm can cope
In Fig. 3 the position of a ball is estimated. For close up with strong texture even if the underlying distribution of the
view such as in Fig. 3 the average error is just a few mil- RGB values is not Gaussian but multi-modal. However, not
limeters, depending on the accuracy of the camera calibra-all textures can directly be separated by the CCD algorithm.
tion. For this simple object and with the quite good initial- For example in order to separate two regions with the same
ization 2 iterations are sufficient. The computational time texture but different orientation of the texture, a preprocess-
per iteration is about 18 ms on a 500 MHz computer. ing step has to be applied yielding feature vectors which
In order to evaluate the performance for a partially oc- are sensitive to the orientation of the texture. The speed-up
cluded ball, we took two images with the same ball position, of the fast CCD algorithm depends mainly on the reduc-
one with partial occlusion, Fig. 1, and one without occlu- tion of the pixels taken into account. In our experiments the

sion, Fig. 6. The ball estimates of the two images differ by fast CCD algorithm was more than 100 times faster than the
2.2cm, which is just 2.6% of the ball distance. However, the original CCD algorithm.

number of necessary iterations is about 5 times higher in the

partially occluded case. Furthermore, in the non-occluded7  Conclusion

case the area of convergence is clearly bigger. The CCD al-

gorithm not only yields an estimate of the ball position, but We have proposed a novel and fast method for fitting para-
also a covariance matrix describing the expected uncertaintymetric curve models to image data and we have applied this
of the estimate. For the partially occluded ball the expectedmethod to the problem of localizing objects observed by a
uncertainty is about three times higher than for the not oc- mobile autonomous robot. Our method does not assume
clude case. This allows a reasonable data fusion with otherany given color distribution or specific edge-profile nor do
sensor data. we use any thresholds. We use local criteria based on local
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Figure 8: The strong variations of background and illumi-
nation cause just small variations of the ball estimates. Forlt®
the five images the standard deviation of the ball estimates
is 1.1 cm which is 1.6% of the distance.
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image statistics in order to separate adjacent regions.

We have shown that the method achieves high robustness
and accuracy even in the presence of strong texture, clut!
ter, partial occlusion, and severe changes in illumination.
Knowledge of the object of interest and the imaging sensor[20]
is explicitly modeled and exploited. This allows a straight-
forward adaption to other imaging devices and other prob-
lems. Due to the here proposed modifications of the CCD [22]
algorithm the method runs in real time for models with a
small number of parameters, e.g. the ball. Since the methodzs
provides a confidence region for the estimates, a fusion with
other uncertain sources of information can easily be accom-24
plished, e.g. in the case of multiple observers.
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