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Abstract—This paper describes a textureless object segmenta-theory of spatial cognition in the sensorimotor stage (until the
tion approach for autonomous service robots acting in human age of 2), and getting a hold of connectivity (i.e. object unity)
is an important factor in the infant's understanding of objects
at that stage [2].

living environments. The proposed system allows a robot to
effectively segment textureless objects in cluttered scenes by
leveraging its manipulation capabilities. In our pipeline, the
cluttered scenes are rst statically segmented using state-of-the-
art classi cation algorithm and then the interactive segmentation

is deployed in order to resolve this possibly ambiguous static
segmentation. In the second step the RGBD (RGB + Depth)
sparse features, estimated on the RGBD point cloud from the
Kinect sensor, are extracted and tracked while motion is induced
into a scene. Using the resulting feature poses, the features are
then assigned to their corresponding objects by means of a graph-
based clustering algorithm. In the nal step, we reconstruct the
dense models of the objects from the previously clustered sparse
RGBD features. We evaluated the approach on a set of scenes
which consist of various textureless at (e.g. box-like) and round
(e.g. cylinder-like) objects and the combinations thereof.

I. INTRODUCTION

A service robot operating in human environments may be
required to perform complex dexterous manipulation tasks in
a variety Qf Cf)nd|t|0n5- For example, ‘_’Vhen setting a table [}y 1. Top-left: The service robot PR2 aiming to segment the scene
the robot is likely to be confronted with a cluttered unstruonsisting of textureless object. Results of the scene segmentation using
tured scent like the example shown in Fig. 1. In order toRegion GrOW|_ng method [3] (top-right, NW), Part-Graph-based Hashing [4]

full f hi k. th b be abl d method (top-right, NE) and Graph-based segmentation method [5] (top-right,
successiully per _ormt |S_taS » the ro _Qt mus_t € able FO eteGl). These methods work in depth, RGB and RGBD space respectively
the individual objects. Without the ability to interact with theand all underachieve due to the complexity of this challenging task. On the

environment, it is dif cult to distinguish between the objecgther hand blue egg on the blue plate was correctly segmented using the
interactive approach presented in this paper (top-right, SE) Bottom row: 3

boun(_jarles an_d .teXture patterns, part'CUI_arly in the presenGfte objects segmented correctly showing the generality of the apporach for
of objects of similar colors, shapes and sizes. multiple objects.

To demonstrate this we tested three state-of-the-art segmen-
tation algorithms operating in depth, RGB and RGBD spaceOur approach: In this work we focus on proposing a
respectively on the given scene. The results are shownsielution for the cases a), b) and c) from above. Similar to
Fig. 1. We notice that they are far from being optimal in th&atz et al. [6], Bergstrom et al. [7], and our earlier work [8]
cases of a) same color objects (a coffee mug and a saucer)vb)propose a system that uses induced motions in a scene to
similar shape objects and occlusions (a white and a blue boghable effective object segmentation. Our system employs a
c) stacked objects (an egg and a plate) and also in the case afathbination of the following complementary techniques: pre-
a sensor default (cutlery in this case appears transparent tothgmentation of a raw point cloud of a given scene from
Kinect sensor). Following structure from motion approaches, single camera view using part-graph-based hashing [4],
one could observe the scene from various views and apglgtimation of a contact point and a push direction of the robot's
merging of hypotheses. This approach would however fail and effector [8], RGBD feature extraction and tracking using
the case of non-navigable spaces for the robot. While one qearticle Itering-based tracking, graph-based feature trajectory
certainly ne tune the algorithms' parameters for a certainlustering algorithm, and dense model reconstruction based
setup and environment, it is easier and arguably more natupal region growing in normal space. There are three important
to exploit the robot's embodiment and interaction capabilitiesgsssumptions in our system. First, that each item is a rigid body
in order to obtain a better understanding of its environmer@nd not subject to large deformations when interacting with
Reaching out to get a sense of what is around is the way htve robot's end effector or other objects. We also assume that
infants get to know their “near space” according to Piagetthe objects are either at (box-like) or round (cylinder-like),
which holds for most household objects in publicly available

"Following the discussion at the Clutter12 workshop at RSS 2012 Weatahases [9], and that in the tracking step the features do not
acknowledge that this is a “laboratory clutter” where the degree of dif cultﬁ h % ob d
is similar to the scenes from the related works but still inferior to the red€t more t arb0% obstructed.

world clutter. The evaluation was performed on 17 scenes with challeng-



ing arrangement of at and round objects of similar colorgjisambiguate the hypotheses. Points in the motion space are

shapes and size82% of objects were segmented correctly irclustered using a two component Gaussian mixture model. A

these scenes. Our system is available as open goancecan limitation of the system is in that the number of objects per

be deployed on a robot equipped with either a 2D-camera asakene never exceeds 2.

a depth camera or Kinect camera and at least one arm. Some approaches examine how the perturbations can be
Overall, we present the following main contributions foplanned to accumulate a sequence of motion cues. Gupta et

the segmentation of scenes consisting of textureless tabletdp[14] use a set of motion primitives consisting of pick

objects: and place, spread, and tumble actions to sort cluttered piles
A set of RGBD features suitable for the tracking of atof single-color objects. Euclidean clustering is used in the
and round textureless object (Sec. V-A); distance and the color space to classify the scenes as unclut-

A graph-based algorithm for the clustering of 3D-featurtered, cluttered, or piled. Distance-based clustering is limited
trajectories, in which graph edges measure the dissimil&s its success is subject to correctly selected threshold. Color-
ities between the RGBD features' distances (Sec. V-Cj2ased clustering may fail in the presence of sudden lighting
The inclusion of a static scene pre-segmentation algehanges. Additionally the system assumes that the objects
rithm and a probabilistic method for the detection of ovefduplo bricks) are of a similar size. Chang et al. [15] present

or under-segmentation (Sec. IlI-B); a framework for interactive segmentation of individual objects
A dense model reconstruction algorithm that makes u%éth an interaction strategy which allows for an iterative object
of the already clustered features (Sec. V-D); selection, manipulation primitive selection and evaluation, and

And the integration of all the above into a pipeline usingcene state update. The manipulation primitive selection step

the Robot Operating System (R&)%s depicted in Fig. 2. uses a set of heuristics to maximize the push action, however,
it is unclear in how much this component contributes to

Il. RELATED WORK the successful segmentation of the objects. The manipulation

Research in passive perception has traditionally focused jmmitive evaluation step uses sparse correspondences from
static images and segmented images based on a set of featilves ucas-Kanade optical ow tracker and computes a set
such as color [10] or higher order features such as the orddransforms which are color matched against a dense point
found in graph cut approaches [11]. cloud. A likelihood ratio of a target being a single item or

This paper focuses on interactive scene segmentation ryltiple items is determined based on the magnitude of the
adding robotic arm manipulation into the perception loogtansform motion and the percentage of dense point matches.
Segmentation of rigid objects from a video stream of objecthe major limitation compared to our work is that they do not
being moved by the robot has been addressed by Fitzpatri&timate corner contact points.
[12] and Kenney et al. [13]. These works are based on theThere is a corpus of works dealing with the estimation of
segmentation of objects from a video stream of a pre-planné articulation models for drawers, boxes, etc. [16], [17]. The
arm motion, use a simple Gaussian model of the color valuesmmon problem for both approaches is in that they assume
to infer the possible motion and a graph cut algorithm fdhe presence of a large, moving plane which they can reliably
the nal object segmentation. These approaches can deal wifistect by running e.g. a RANSAC algorithm on the input point
textured as well as textureless objects. In contrast, our aaud and which unanimously represents the part of the object
motion is not pre-planned but adapts to the scene and they are looking for.
make use of 3D data to segment the object candidates from
the background. [1l. SYSTEM AND PRE-PROCESSING

Both approaches presented in this paragraph work with the
textured objects only. Katz et al. [6] address the problem o
segmenting the articulated objects. A Lucas-Kanade tracker
and a set of predictors (relative motion, short distance, loi’
distance, color, triangulation and fundamental matrix) a
applied to obtain rigid body hypotheses (in form of a graptf
and a subsequent xation point on the object. The latte
is used to segment an object based on color, intensity &
texture cues. The major limitation of this approach is th
pre-planned arm motion and the time needed to break 1 ¢
graph of object hypotheses into the subgraphs using a m ‘ ‘
cut algorithm. Bergstrom et al. [7] propose an approach
interactive segmentation that requires initial labeling using
3D segmentation through xation which results in a rougl
initial segmentation. The robot interacts with the scene to

System Pipeline

Fig. 2. System pipeline.

2http://www.ros.org/wiki/interactivesegmentatiortextureless ) ] . )
3www.ros.org Our approach consists of ve main steps as depicted in



Fig. 3. Two test scenes in the top and bottom row respectively. First column: original scenes; second column: extracted RGBD features before the interaction;

third column: parts? from the static segmentation; fourth column: object hypoth€dsom the static segmentation; fth column: tracked RGBD features

after interaction; sixth column: relative distances between the tracked features. Plots with the ramp denote distances between features on different objects anc

plots with the constant values denote distance between features on the same object.

Fig. 2 and demonstrated in an accompanying Vidéo the labeled parts with geometric categories that can be grouped in
rst step we obtain an RGBD point cloud from the Kinectorder to obtain object hypotheses. Based on statistics computed
sensor. In the second step we perform static object pfesm the training data on single objects, we can estimate how
segmentation which results in a set of categorized objdikely it is that an object hypothesis is correct.
hypothese<O, with the category being either at or round, In the rest of the section we summarize the part-graph-based
and a list of object part, that every objecto 2 O hashing algorithm brie y and show how we use it to guide the
consists of. Having obtained the object hypothe3ese infer interactive segmentation.
which hypothesis is segmented correctly. For that we countl) Decomposition into Part Graphstn order to nd the
the number of parts that the respective object hypoth@sesparts 01;:::;pn 2 Po) in the point clouds we use the
consists of and then sample from the Poisson distributiclustering criteria presented in [20], such that patches with
according to the Eq. 1. After obtaining the probability of th@a small curvature are considered, as shown in Fig. 3 column
scene being segmented correctly we decide if the interact®e For each part we subsequently compute GRSD- (Global
segmentation algorithm should be used or not. Radius-based Surface Descriptor [21]) feature and store it
We use categorization of the objects as a prior for trackirigr later use. We then extract the part neighborhoods by
by extracting and tracking line and corner RGBD featurashecking if the physical distance between two parts falls below
on the at object hypotheses and circle and cylinder RGBB threshold of2cm (considering Kinect noise level [22]), and
features on the round ones in the third step. Finally, we execligld a connectivity matrix. Starting at each vertex of the
the arm motion movement ificm intervals until we reached connectivity matrix, we create all the possible groupings up
a maximum of5 pushes. All of the features are being tracketb a certain size (eight parts in the case of single objects
during the interaction and the trajectories of feature centroidad four in the case of cluttered scenes) in order to obtain
are being saved. Based on relative distances between tiiee “soup of segments”, and create the groups' hash codes
feature centroids, the graph-based algorithm for the trajectarging isomorphic graph metrics. The hash codes are then used
clustering is applied. The output of the algorithm is théo further split the feature space ending up with a separate
number of objects belonging to a certain object hypothesitassi er (nearest neighbors in our case) for each hash code.
o and the association between the object number and the p&tsing the classi cation phase we obtain con dence votes

the last step the dense model is reconstructed using the regiodes that are found in our scene. Based on these votes a

growing algorithm where the tracked and clustered RGB®8ecision is made upon the class of the segments. For a detailed

features are used as seed points. description of this approach please refer to [4].

. . . 2) Object Part CategorizationThe classi er was trained

B. Static Pre-segmentation of Objects on a subset of the dataset from [23] as presented in [4]. The
In order to achieve a pre-segmentation we make use of {figvice of the feature determined for each part, namely the

classi cation method presented in [4] based on part-graptsRSD- is motivated by the fact that we are dealing with

based hashing. The basic idea is that segmenting objects @e| objects not seen before by the classier, so in order

curately in a cluttered scene does not always yield the eXpeCdesuccessfully categorize them we need to use geometric

result, as seen in Fig. 3 column 4, and can lead to classi catigfhtures. Additionally, the low dimensionality and additive

failures, but over-segmenting is easily realizable [18]-[20]. Weroperty make GRSD- a suitable choice for such task.

use the classi cation approach described in [4] for categorizing Objects (1;:::;0, 2 O) are categorized in six geometrical

over-segmented object parts in cluttered scenes by consideidBgegories: sphere, box, rectangular/ at, cylinder, disk/plate

combinations of these parts to compute features and clasgifyy other. Doing this we get a better a discrimination between
these ef ciently with the aid of hashing. The result is a set of
5|f the feature is additive, the descriptor that would be computed for the
4http:/lyoutu.be/BudLayrGC1ls object is the same as the sum of the features of its segments.



different objects. After having the results for the six geome&s one object (column 4), but in column 3 we notice that there
rical classes, we merge them together into differebject are 6 parts in the scene. The probability for 1 object consisting
typesconsidering everything spherical and cylindrical beingf 6 parts is below thed:3 value according to the Poisson
round and disks/plates, ats and boxes @ objects. With distribution and clearly indicates an over-segmentation error
the categoryother we thus get three object types, whereaand the need for the robot to segment this region interactively.
most household objects fall into the rst two [9].

In this paper we omit the categoother and use the other
two in order to determine if the interactive segmentation is Once the over or under segmented region of interest has
needed, and if yes, which RGBD features to extract and traleken identi ed according to the above generated distribution,
in the respective part of the point cloud in the given scene.the appropriate contact points between the objects in the scene

o ) and the robot's end effector must be determined. Furthermore,
C. Veri cation of Correctness of Segmentation the direction the robot's end effector should move must be

Since the geometric categorization of parts does not gighosen.
the correct grouping of these parts to form objects, simply In this paper we apply our previously developed approach
grouping the parts of the same category together does baked on the local concavities [8]. Since most commonly
always separate the objects, especially if classi cation errogsicountered household items have convex outlines when ob-
occur too. A method of voting for object centroids followederved from above, our system uses local concavities in the
by a model tting step was described in [20], but we assum@D contour of an object group as an indicator for boundaries
having no CAD models for test objects in this paper. We woulsetween the objects. The robot separates objects from each
also have to consider 6DOF poses, complicating the approagher by pushing its end effector in between these boundaries.
considerably. As the implementation details of the corner-based pushing go

Whereas the segmentation of objects is not uniquely de nesieyond the scope of this paper, we refer the reader to [8] for
there are still regularities in the number of parts they adetails.
broken up into. As shown in Fig. 4, the distribution of the
number of different object parts, generated in the training stage V- 1EXTURELESSOBJECT SEGMENTATION
of the part-graph-based hashing algorithm, can be modeled ak this section we describe the selected RGBD features
a Poisson distribution, with an average error of 1.7% (and suitable for the tracking of textureless objects and the particle
most roughly 9%). Itering-based tracking library. The features are estimated on

the above classied list of object hypothes€s from the
$ %
- Llﬁ ﬂﬂ B a combination of the visual appearance and the geometrical
b structure of the feature to compute the likelihood function of

RGBD point cloud. RGB and the depth measurements in the
point cloud are time synchronized and registered. We employ
Fig. 4. Distribution of number of parts (see Fig. 3 column 3) per object arithe feature hypothesis.
their approximation with a Poisson distribution.

IV. PUSH CONTACT POINT ESTIMATION

0,

objects and 3D line and 3D corner point cloud features for the
at objects. The rationale behind this selection of features is
that they are all fast to compute and yet distinctive enough for
tracking with the proposed tracking algorithm. The latter uses

Omm
Omm

%
Ll 3D circle and 3D cylinder point cloud features for the round

A. RGBD Features
The Poisson distribution described by Eq. 1 describes thein order to obtain a 3D line point cloud we rst nd object

probability of different number of events occurring in a giveedge candidates in the cluttered scene using curvature values
interval, which we interpret here as the number of pagomputed in the input point cloud from the Kinect sensor.
boundaries encountered over the surface of the scanned objgekt we t a line model to the object edge candidates using
The parameter is the mean of number of parts, which in (URANSAC [24] and nally pad the line with neighboring
case is 0.876 for at, 2.166 for round, and 3.317 for othgoints on the object within a radius 86m. 3D corner point
object types. clouds are determined using the 3D variant of the Harris
ke =k (1) corner detector as implemented in the Point Cloud Library
(PCL)(pointclouds.org) and padded with neighboring points
This simple model is used to judge if a group of parts afn the object within a radius &cm as well. Padding of both
the same geometric category forms a single object or if tifieatures is necessary in order to guarantee computation of a
robot should try to interact with it. We cut the probabilities abetter likelihood function needed by the tracker as explained
0:3 for at and 0:15 for round objects. in the following subsection. The features are shown in Fig. 3
Example: To demonstrate this, from the right part of Fig. £olumns 2 and 5, 1st row.
we can deduce that the at object is most likely to consist of 1 To obtain a 3D cylinder point cloud, we also use a RANSAC
or 2 parts. The test scene with 2 boxes (Fig. 3) was categorizaddel which is based on the fact that on a cylinder surface, all

P (k parts forming a single object ) =



normals are both orthogonal to the cylinder axis and interséet Trajectory Clustering

it. We consider the two lines de ned by two sample points and The tracked features' 3D trajectories (see Fig. 3 column
their corresponding normals as two skew lines, and the shortggtare clustered using Alg. 1 in order to nd the feature-
connecting line segment as the axis. Determining the radiusi§iect associations. We treat each of th&@GBD features as
then a matter of computing the distance of one of the samplode in a graph, where edge weights represent the maximum
points to the axis. By setting the cylinder axis perpendiculaimper of consecutive violations of the relative distance
to the table results are more robust, but is not mandatopgriation threshold diveshoid ), i-€. breaks (optionally, also
Finally, the generation of the 3D circle is also done usingose changes can be checked for better performance). The nal
RANSAC by projecting a sample point into the 3D circle’sonnection matrix is obtained by removing the edges which
plane and computing the distance between this point and /e weights that exceed a given percent@gg.hoa ) of the
point obtained as an intersection of the line from the circlefegretic maximum number of frames. The distance between

center with the circle's boundary, whereas the line is passifghtyres which did not vary are then clustered together.
through the projected sample point. The features are shown in

the 2nd row of Fig. 3 columns 2 and 5.

Algorithm 1: Graph-based trajectory clustering algorithm.
B. Particle Filtering-based Tracking of RGBD Pointclouds A breakbetween features means that the relative distance

The feature point clouds extracted above are then pass@fWeen them exceeded the given threshold.
to the particle lter-based tracker as reference models. The'* R;rgbg{e"; t’aﬁfedre;(gg‘\%re;stance nvaarlire]a?ioﬂumber of
tracker consists of four steps: i) the above described reference threshmdp diveshos » max allowed percent of

model selection, ii) pose update and re-sampling, iii) computa-  consecutive  breaks pireshola . and the set of

tion of the likelihood and iv) weight normalization. In the pose u‘:?’ﬂ“‘r’:sd"f each feature T Ift " *!
update step we use a ratio between a constant position and A eitive. direshod - Pireshold ty rimd N
constant velocity motion model which allows us to achieve Dieference = pairwiseL2¢1)
ef cient tracking with a lesser number of the particles. In the é:* nr of ‘;‘é’:zgg“;')"e breaks between features *!
re-sampling phase we utilize Walkers Alias Method [25]. The I atative distances at ty «/
likelihood functionl; of the hypotheses in the third step iS Toreaks = zerostn,n,n) '
computed as in Eq. 2 and is based on the similarity betweer#o*reggr‘:’t‘_‘ Z”L’nggr of consecutive breaks *!
the nearest points pgir_of .the. reference pomi) (cloud and I+ relative distances at t; f
the input data ¢ ). Similarity is de ned as a product of a Di = pairwiseL2(;)
term describing the points pair's euclidean distahggigean ’E* _dj?g'a“og of d'Sta”jceS *!
‘i : E : i = i reference
and a term describing points pair's match in H&V (ng, I+ breaking feature pairs “l
Saturation, Value) color spadg,,r . and are the weight Bi = f(f1;f2)jEi[f1;f2] > dhreshold
factors set td):5 in our case. foreach (f1;f2) 2 Bi do
| Coreaks [f1;f2]++ /+ increment counter */
lj = leuciidean (P} G )lcotor (P3G ) foreach (f1;f2) 62B; do
1 | Coreaks [f1:f2]=0 /* reset counter ]
leuctidean (Pj;G) = W | Tbreaks [i] = Cpreaks /* save counter */
1 /* maximum percentage of consecutive breaks */
eoor (B3 8) = g G 12 (@) Wi adneency i y
. . I A = getConnection <=
To obtain the model's weight we sum over likelihood values ;- o bor of C|u:§ebrr§al§ased o refg‘;?ac?an «
for evegy points pair in the reference model as follows: N cusiers = nrZeros(eigenvalues(diag(degresy - A))
w; = ;. This likelihood function assures a combined /* 9et features clustered by connectivity *

i Output: Fgusters = connectedComponenis)
matching of model's structure and visual appearance. In the

nal step we normalize the previously computed model weight Fig. 5 shows an evaluation of the clustering algorithm
by applying a relative normalization as described in [26} 17 scenes from Fig. 7. The use Bfresnod IS Clearly

The real-time operation of the algorithm is made possiblgjyantageous, and the method works well for a range of the
th_rough various optimization techniques s_uch as downsam;reshoI ¢ and thedgresnols  parameters. Since too low values
pling of the point c[ouds, ppenMP parallellganon and KLDtor gy eshold over-segment the features, values a&cm are
based (Kullback-Leibler Divergence) sampling [27] to selegfsed, and the possible under-segmentations solved by applying

the optimal number of particles. _ _the whole method iteratively until all the objects are clearly
Why not to track object parts? To answer this question geparated.

we refer the reader to scene 1 in Fig. 3, column 3 where top ]

surfaces of both boxes were grouped into one segment. HadieDense Model Reconstruction

taken this segment as a reference cloud the tracking algorithnConsidering the connected featufegysiers as being part
would fail due to its limitation to generate multiple referencef the same object, we reconstruct the dense model of the
clouds during tracking. object using region growing in normal space, which also




Algorithm 2: Region growing with normals & boundaries.

[+ set of features Feusters » distance threshold
droi thresh » angle threshold ePSthresh ,» Seed queue
sq, regions list R, current region R, list of
processed points processed */

Inpu{: Fclusters , droi _thresh » ©PSthresh
foreach fi 2 Fgusters dO
ps;i := centroid{;) sg:add(ps;i ) / = select a seed point

and add it to a queue */
processed(ps;i ) = true
Ri := fps;jg/* initialize region */

while sqg:notempty () do
N := fq kdist (g ;Ri[c]) <droi _thresh 0
| * select neighborhood */
foreachg 2 N do
if processed(q; ) = true then
L continue
if boundary (qj) = true then

stopgrowing = true
Ri Ri [f ¢ g processed(q; ) = true

break
if deg @s7gj;norm (gj)) > epSinresh then
Ri  Ri[fqgg
processed(q; ) = true
else
Fi . . . L break
ig. 5. Trajectory clustering success rate on 17 scenes for different values L
Of Pthreshold  @Nd dinreshold  (in meters). if stopgrowing = false && 8¢ 2 N boundary( ) =
falsethen
L sqg N

makes use of the borders found at depth discontinuities, as| L

shown in Alg. 2. The idea for the region growing constraints L R Ri

is based on the segmentation described by Mishra et al. [28]]‘C"r‘gai‘f‘*f‘_':f{_i ;2st§me; gg.ecthen

where the authors make use of a prede ned xation point and LI Féi Ri [f Fij g

a border map. Since we already know the features that are -
. - - Output: Dense modelR;

part of the object, we can easily de ne a seed point for the

region growing. In order to nd the best possible seed point, . L

Wg sepgrate tﬁe connected features usinz euclidean cluiteljﬁ%e'ther both at or r(_)und_ or a combination Of_ these two.

calculate each of the resulting clusters' centroid, and then st y may also oceur in different arrangements; complete_ly

growing from these. An important condition of the regior’?eparated’ only touching, one on top of the other, or in solid

growing is the assumption that objects are often compos% tact. Solid contact refers to both objects peing in contact
of convex parts [29]. Therefore, we make sure that duri ith each other, whereby the contact area is larger than a

region growing two points are assigned to the same reBion ng_leflme_b(lsc;ane number 4 Ik? E'g' 7). Solme cotn %gratlonsa
if the angleepsnresh  between the vector connecting them an§'€ Inf€asible for our approach. -or €xample a at object an

the points normal is close to obtuse (considering the senfoFoufnd o?ﬁ]ect canr&ott?e ct)f the S?rtr:e S'Zi’ (zjr round objectton
noise level [22], 89 were used). Once all region-feature pair op of another round object cannot be pushe (one mug ontop
ORanother mug). It is also not possible to have a round object

have been identi ed, we reconstruct the dense model. Sincein”". = . . . .

the trajectory clustering step we already identi ed the featuré@at IS 'n.SOI'd cqntact with anoth_er round O.bJeCt' For th|s case
that belong to the same object, having multiple regions for tHE consider sohgl contact as bemg two objects touching with
same object is easily dealt with by merging those regions fi ore than one line, for example in scene number 17 where
which the corresponding features belong to the same obj@l 10 the handle of the mug touches the juice box.

into dense modelR; .

VI. EVALUATION AND DISCUSSION
A. Experimental Setup

The system was evaluated on 17 scenes in different con-
gurations as illustrated in Fig. 7. The scenes are numbered
1-17 and arranged according to the legend shown in Fig. 6.
Though our system can iteratively cope with multi-object
scenes, we performed the evaluation on two-object scenes Wil 6. Legend for the different scene con gurations. The scenes are shown
the nite number of scene con gurations that can occur. TheseFig. 7.
con gurations can be split in three different ways, namely: i)
size, ii) shape, and iii) arrangement. A scene may consist ofit is important to emphasize that the above devised con-
two objects of different sizes or the same size. The objects magntions refer to the scenes after a push. The scenes before



interaction were designed such that it is dif cult or impossible VII. CONCLUSIONS ANDFUTURE WORK

to segment them using static segmentation techniques. We have presented a novel interactive segmentation sys-
Average time to segment one scene from Fig. 7 amountedigdn suitable for the segmentation of textureless objects in
12:5s with the pre-segmentation takirigbs, feature extraction cuttered tabletop scenes. Integrated in the system are the
3:5s, pushingbs (tracking runs a25fps for up to 10 features) static pre-segmentation based on geometrical categorization,
and dense model reconstructidnSs. Apart from tracking gz push point and direction estimation, RGBD features suitable
all modules perform linearly with the number of featuregyr tracking of textureless objects, the graph-based trajectory
and objects respectively and can thus easily be used fiistering algorithm and the dense model reconstruction. A
larger and more complex scenes. For all the scenes the pHgBrous evaluation of the system on a set of 17 scenes showed
point estimation algorithm was used, the only exception beiRgccessful segmentation &% of the cases. The results show
the "on top" arrangements for which the algorithm does n@ke applicability of our system for objects of similar colors,
generalize. For this reason and since the scope of the pap&jhgpes and sizes on predominantly at and round surfaces.
on the priors from the static segmentation, RGBD features fOfThough the results of the presented system are very promis-
textureless objects and the nal dense model reconstructiGRg, there is still several improvements to be made. First, we
we performed the experiments by manually inducing motioRg|| solve the problem depicted in scene number 8 by inte-
into the corners of the scenes. In our future work we Wilirating color and the texture-based segmentation techniques.

address nding a generalized push point algorithm. Second, we plan to improve our pushing heuristic such that we
can deal with the 'on top' arrangement. This can be done by
B. Results looking for 3D corners as pushing points. One could also use a

All the experiments were performed three times for each #ffferent heuristic such as the singulation method presented by
the 17 scenes. All the results are presented in Tab. | whigihang et al. [15]. Lastly we will also address heavy occlusions
shows the segmentation success rate for every scene. #A€ self-occlusions of RGBD features in the tracking step.
corresponding gures for this data can be found in Fig. 7.
The algorithm was never able to segment the scene number

8 and performed poorly for scenes 6 and 13. In these casBg D- Pangercic, M. Tenorth, D. Jain, and M. Beetz, “Combining Perception
’ and Knowledge Processing for Everyday Manipulation Ihternational

the contact Surface_ of the two objects is |arge_ and the objects conference on Intelligent Robots and Systems (IRTEpei, Taiwan,
are of the same size. Erroneous reconstruction happens due October 18-22 2010, pp. 1065-1071.

; ; ; 2] L. B. Cohen and C. H. Cashon, “Infant Perception and Cognition,”
to a lack of a suf Clently gOOd boundary estimation near the[ in Comprehensive Handbook of Psychology, Volume 6: Developmental

touching surfgce, and theref_ore the region growing does not psychology Wiley and Sons, 2003, ch. II. Infancy, pp. 65-89.
terminate. This could be alleviated by integrating texture/color3] Q. Zhan, Y. Liang, and Y. Xiao, “Color-based segmentation of point

based segmentation methods, which we plan to investigate jp ;"_’gdsi;lsggg' £ BaintBencredi N. Blodow L C. Goron. and

the future. M. Beetz, “Object Categorization in Clutter using Additive Features and
It is important to note that the overall segmentation was_ Hashing of Part-graph Descriptors,” 8patial Cognition 2012.

; 0 : ] P. F. Felzenszwalb and D. P. Huttenlocher, “Ef cient graph-based image
successful in more than 82% of the experiments. Tab. Il shows segmentation Tnt. J. Comput. Visionvol. 59 no. 2, pp. 167—181, 2004,

that the more objects differ and the less in contact they ang] p. Katz and O. Brock, “Interactive segmentation of articulated objects
the more successful the segmentation becomes. Our algorithm in 3d,” in Workshop on Mobile Manipulation at ICRR011.

: , ' ik iol7] N.Bergstom, C. H. Ek, M. Bjrkman, and D. Kragic, “Scene understand-
performs eXtremely well in the ‘on top’ arrangement which is ing through interactive perception,” iim 8th International Conference

very challenging for the static segmentation techniques. on Computer Vision Systems (ICYSpphia Antipolis, September 2011.
We would like to draw the reader's attention to all the scenef$] C. Bersch, D. Pangercic, S. Osentoski, K. Hausman, Z.-C. Marton,

. . . R. Ueda, K. Okada, and M. Beetz, “Segmentation of cluttered scenes
with the round objects. It can be noted that the Kinect sensor through interactive perception,” iRSS Workshop on Robots in Clut-

from the used viewpoint (mounted on the head of the human ter: Manipulation, Perception and Navigation in Human Environments
size PR2 robot) always captures mugs as two spatially non- Sydney, Australia, July 9-13 2012.

Z. C. Marton, D. Pangercic, N. Blodow, and M. Beetz, “Combined
connected parts. In order to robustly merge these two par 2D-3D Categorization and Classi cation for Multimodal Perception

using segmentation algorithms operating on point clouds or systems,The International Journal of Robotics Resear@011.
images of static scenes, model-based segmentation algoritffk J. Bruce, T. Baich, and M. M. Veloso, “Fast and inexpensive color

: . . . , i ion for i ' i ional Conf
are required. While that constitutes a feasible solution, the gﬂﬁ%feﬁ%%'gtegfggg :r:d'néf,rjgm’se (ﬁ%%tssiaaérgag%?gbgoznoggen;;

system presented in this paper can easily deal with such scenes2061 — 2066.

without a model by clustering the two parts of the mug sind&l] Y. Boykov and V. Kolmagorov, "An experimental comparison of min-
. . cut/max- ow algorithms for energy minimization in visio rans.
they move ”g'dly with respect to each other. Pattern Anal. Mach. Intel).vol. 26, pp. 1124-1137, September 2004.

For the scene in bottom row of Fig. 3 we can observe th@b] P. Fitzpatrick, “First contact: an active vision approach to segmentation,”
there is only one feature on the left object. All the clustering_ i IEEE/RSJ Int. Cont. Intelligent Robots and Systems (IR2H)3.

| ithms trving to explicitly cluster at least one pair o 3] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for
algon ) ying Xphcitly _u ! - pai manipulation in unstructured environments,” Proceedings of the
features with the constant relative distance over time would 2009 IEEE international conference on Robotics and Automatien
fail in this case. Using the graph-based clustering method we, CRA09, 2009.

ble to di gt th gt P d f th 9 h di *lé}] M. Gupta and G. S. Sukhatme, “Using manipulation primitives for brick

are able to disconnec € two nodes o € graph ana inte sorting in clutter,”International Conference on Robotics and Automation

that there is a single feature-object association. (ICRA), 2012.
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