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Abstract— Better sensing is crucial to improve robotic grasp-
ing and manipulation. Most robots currently have very limited
perception in their manipulators, typically only ngertip posi-
tion and velocity. Additional sensors make richer interactions
with the objects possible. In this paper, we present a versatile,
robust and low cost sensor for robot ngertips, that can
improve robotic grasping and manipulation in several ways:
3D reconstruction of the shape of objects, material surface
classi cation, and object slip detection. We extended TUM-
Rosie, our robot for mobile manipulation, with ngertip sensors
on its humanoid robotic hand, and show the advantages of the
ngertip sensor integrated in our robot system.

I. INTRODUCTION

Our goal is to improve the reliability of robotic grasping
and object manipulation by enhancing the sensing capabili-
ties of robotic manipulators. Adding sensors to robot hands
lIs a widespread gap in humanoid and service robotics:
As soon as a robot gets close and grasps an object, the
view from the 'head' is heavily occluded by the hands and_ ) ) o ) )
arms. Meaning that the best sensors available (cameras/raflfeiic; i is rignt hand improve autonomous grasping, et it recognize
sensors) will not have a clear view of the object anymore, angbject surfaces, and detect object slip.
the grasping and manipulation action will take place without
good feedback information. The sensor that we propose | =
this paper attacks this problem in several ways. =

Robots interact with the world using their manipulators,
and there is a great range of them: from simple parallel-jav
grippers to complex humanoid hands with many degrees ¢
freedom. Their basic function is to xate objects within their
'ngers' by applying a certain amount of force, and letting
friction do its job. An important limitation is that most of
them only have proprioceptive sensing, usually the positiofig. 2. System components (left image, clockwise): Fingertip sensor, SPI
and velocity of the ngers, so they can only indirectly gathelcontroller, FLOSS-JTAG. Right: A 3D-printed ngertip for the DLR/HIT
information about the objects they are manipulating. nd.

In this paper we propose a sensor that can be installed di-
rectly in the ngertips, and extend the perceptual capabilities |, 5rder to realize those capabilities, we have designed a
of the hand to: ngertip sensor (Fig[R) that has the following basic modes:

1) Reconstruct the 3D shape of objects, specially the

occluded parts close to the chosen grasping area.

2) Recognize the surface texture of objects (quickly and

accurately).

3) Detect slip of the object while manipulating (lift-

ing/holding).

Proximity sensor: It can measure the distance to objects
with a range of 1-10mm. This is the distance necessary
for pre-touch sensing, that can be used for reconstruct-
ing the occluded shape of the object, or for pre-grasp
nger positioning. This is particularly important for
improving autonomous grasping.
. ) o Surface image acquisition: The sensor transmits a
The authors are with the Intelligent Autonomous Systems / Arti cial 30x30pixel i f fth bi f d
Intelligence chair, Computer Science Department, at the University of Xsupixe 'mage_ rom a_n area of the object o aro_u_n
Bremen. We are also part of the Center for Computing and Communication 1 square mm. This data is used for surface recognition.
Technologies (TZ'), at the same UniVerSity. We were preViOUSIy at the Optlcal_ oW measurement: The Sensor can measure tan-
Intelligent Autonomous Systems group, part of the Technische Universitat . . . .
gential displacements of the objects held in the ngers,

Munchen (TUM). The experiments described in this paper were done at "
TUM. and be used as a slip sensor.
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Fig. 3. Fingertip sensor size comparison, and the sensor on top of a ngertip
of our DLR/HIT 4-Finger robot hand.

Fig. 4. Three ngertip sensors installed in the DLR/HIT hand (thumb,
index and ring ngers).

We have installed the ngertip sensors in our robot, TUM-
Rosie (Fig[L). In the following sections we show how they
can be used to improve robotic grasping. Taking a typicalapacitive[4] or infrared[5] principles, which are installed
pick and place scenario as an example: The robot will udg a robot's gripper. They are used to position the ngers
the ngertip sensor's functionality as described above. Firsgorrectly for grasping, detect interaction with humans, and
it can do a 3D shape reconstruction in order to more reliabli@ grasp objects that could not be detected precisely through
grasp the object. As soon as the object is in the han@ther means. Also, a grasp controller based on human control
surface images can be acquired to recognize the objecéshemes shows the advantages of tactile sensing in [6],
surface texture and con rm its identity. Finally, during lifting including mechanisms to use grip force estimation and slip
and carrying of the object, the slip detection can alert dietection using pressure sensors on the PR2 robot.
undesired movements of the object. We have also seen fast development in the eld of robotic
skin. Advanced designs[7] include multi-modal sensors, in-
Il. RELATED WORK cluding infrared proximity sensors. There is still work being
The idea of adding sensing to the manipulators is not newone on reducing the size of the skin units, and making them
In fact, in the early days of robotics, having sensing on thghore reliable, but we expect to see a more widespread use.
robot's hand was a way to concentrate the limited Computingesigns using capacitive sensors [8] are already being used
resources to the place where the contact could happen. It wascover ngertips and larger areas.
a type of data lIter: Instead of observing a big area with a Also related are systems that include a stereo camera[9], or
camera and processing a lot of data to nd the position o4 depth sensor on the robot's gripper. These systems deliver
the hand, it was better to have local sensors on the hand reggty rich point clouds from the environment in the close
to tactile or other input. vicinity of the gripper, which has a very different point of
There was a lot of interesting work in tactile sensors, angiew than the robot's head. This is useful for dealing with
how they could be used to gather information through contagkclusions. One disadvantage is that the arms are often not
and then to reconstruct object shapes[1]. Some years laighg enough to capture a view from behind an object.
there were already interesting overview papers[2], explaining As early as 2002, optical mouse sensors have been used
principles of operation of many different sensors for manipfor odometry in miniature robots [10], and their use as a
ulators: Tactile sensors, force/torque sensors, surface normfp sensor is a only natural progression. More recently, they
sensors, actuator effort sensors, and others. These ideast@ige been used to measure slip for haptic applications during
still valid today. [3] is a recent reference of tactile sensingontact [11].
technologies for robots. There are promising studies of surface texture recognition
As computers became faster, it was possible to operate g8ne by robots. [12] shows good results obtaining data from
bigger data sets, and there was a shift towards environmeinetal pin stroking a surface. In [13], several machine learn-
sensing. Initially this meant a lot of work in computer vision,ing algorithms are analyzed for surface texture recognition

and most recently in 3D sensors. As an example, today Wging data from an advanced biologically inspired nger.
see a lot of attention to algorithms that work on point clouds

from real-time depth sensors which are even put together to Ill. SYSTEM OVERVIEW
make detailed maps of the environment. We are starting to TUM-Rosie is our mobile manipulation robot for human
come full circle, and the advantages of manipulator sensirigdoor environments. The robot has two KUKA LWR-4[14]
become clear again. Thanks to miniaturization in electroniclightweight robot arms, with DLR/HIT[15] hands as manip-
and to more robust equipment, there are many new sensinjtors. Both arms and hands are state of the art devices,
modalities available for robot hands or grippers. and have much better proprioceptive sensing capabilities
In this paper both approaches come together, as we uk@an most other robots. The hands include 3-DOF torque
realtime 3D depth sensors to model the shape of an objesgnsing in each nger and report the complete state (position,
and ngertip sensors to reconstruct the missing informatiomelocity, torque) of all the joints with a high framerate.
because of occlusions. Additionally, in order to improve the capabilities of our
Recent work has shown the usefulness of pre-touch sersystem, we have installed three ngertip sensors (Fjg. 4) in
ing. These systems use proximity sensors, typically based e robot's right hand.



A. Fingertip sensor

The ngertip sensor is built around the Avago Technolo-
gies ADNS-9500[16], a high-end laser navigation sensor
designed for computer mice. The ADNS-9500 is essentially,
a miniature 30x30pixel high-speed camera with an integrate
laser emitter and a microcontroller. The collimated laser light
makes minuscule cracks and surface characteristics visibl
to the camera, so that it can detect optical ow (motion)
even on dif cult surfaces like glass or porcelain. The internal
registers and the image obtained by the on-board camer,
are accessible over a high-speed (2Mbps) SPI bus. Thi
makes it possible to use the sensor as a simple optica
proximity sensor (by looking at how much laser light is
bouncing off the objects), as a miniature surface camere
(for surface recognition), and as a slip sensor (measuring thi
displacement of the surface on the ngertips, like a regular_
computer mouse).

We developed the following components of the ngertiprig. 5. TUM-Rosie's perception of a iced tea package on the kitchen
sensor system (Fi@l 2): counter. On the top left, the point of view of the robot is shown. The other
T . . images show the extension of the occlusion: the robot does not perceive
A miniature board (15x15mm) with support electronicany 3D points on the left side, right side, or the back of the object. This
components for the Avago ADNS-9500 sensor. Usingf a typical problegﬁ when uTingfs?]nsors_mounted t())n thﬂe robolt's l21e?d: th?
H . . erspective Is good to see a lot of the environment, but often only the frontal
this board, the sensor can be installed in small placeg o' ¢ ine objects can be seen.
and only has one small connector for the SPI data bus
and power.
The SPI-controller: A microcontroller board that con-g. |ntegration into the robot hand of TUM-Rosie

trols up to four ADNS-9500 sensors (one for each o .
ngertip in our robot hand). This board is based on. We use ROS[17] as a communication middleware for

. . integrating the different components of our robot, and the
ﬁ)?/vslg\/hglgf:oﬁr'\nggf m'grzsgngcgggggd deals with theROS nodes used for capabilities described in this paper are
A sliahtly modi ed version fgth FLOSé/JTAG high- accessible as a part of the of cial TUM-ROS[18] repository.

slightly modi ed version ot the -ang The corresponding nodes stream data in a way that is easy
speed USB to serial converter and JTAG programmey,

I ) use for other ROS components. For example, the proximity
for communication with the computer and easy pro- S . . oL . .
. sensing is combined with position information obtained from
gramming of the rmware of the SPI-controller.

) forward kinematics to generate a standard ROS 3D point
The ngertip sensor has been developed as a freggyg.

software/free hardware project, so all the information
necessary for building it is available online under V. 3D SHAPE RECONSTRUCTIONIMPROVING THE

free (as in freedom) licenses at this address: OBJECT SHAPE ESTIMATION FOR ROBOT GRASPING

http://toychest.in.tum.de/wiki/projects: ngertip. This  The laser in the ADNS-9500 sensor emits infrared light
includes all the schematics, the circuit board designsit an angle, so that the maximum amount of light will be
and the software. re ected when an object is at a certain distance from the

The cost of the system is very low: It is possible to getensor, and decreases as the object moves further away. It
all the components for a setup with four ngertip sensorsis possible to estimate the distance to the nearest object by
as needed for installation on humanoid robot hands, for apvaluating the values of the internal registers of the ADNS-
proximately $200 USD. We also used a 3D-Printing service500 sensor, specially the shutter speed and frame period of
to make the new ngertip housings, for a cost of around $2¢he internal camera. These values are adjusted continuously
USD each. This has an excellent cost/bene t ratio, takin@y the sensor, so that we can detect the presence of an object
into account the additional capabilities given to the robopositioned 1-10mm front of the sensor reliably. This is the
hand. functionality required for its use as a proximity sensor. When

The size of each ngertip sensor is 15 x 15 x 16mmsuch sensors are used in robotic grippers, they are sometimes
(See Fig[B), small enough to be installed in the jaws dtnown as pre-touch sensors.

a parallel-jaw gripper, or the ngertips of many robot hands. We use the proximity information to reconstruct the shape
The dimensions of the two other boards put together is 34& an object without touching it. Our robot has a RGB-D
X 17 x 15mm. (Xbox Kinect’™) sensor on its head that delivers high quality

The complete system communicates with the computgoint clouds from objects, but they are often incomplete
over a USB connection, which also provides the supplipecause of occlusions. The ngertip sensors complement
voltage. our perception system for grasping by delivering shape



Fig. 6. Left: The point cloud corresponding to the iced tea package has

been segmented and is shown in color. Right: The centroid and covarianggy. 7. A grasp planned by SGP based only on shape information from
of the points represent the object for use in grasp planning. The centroidiie RGB-D sensor, where the size of the object is underestimated. The
marked by the frame axes, and the ellipsoid represents the covariance. Ned@resentation of the hand is shown in dark red.

that the robot underestimates the size of the object considerably.

information from occluded areas, specially the ones aroungg
possible grasping locations.

A. The occlusion problem

Let us observe a rectangular iced tea package using the
RGB-D sensor mounted on the robot's head. Fjg. 5 shows ti@. 8. The robot explores the shape of an object by moving the ngers
point cloud data as it is perceived. The data looks complef®se © 't
from the point of view of the robot, but after looking at
the points that represent the rectangular box from the sidgecessary. It is better to use the proximity sensors to avoid
the missing information becomes evident. The robot ha&.lshing the object in the rst place.
basically no information from the sides or back of the box.

We use COP[19], [20], a software developed in ouB. Obtaining a point cloud using proximity data
institute for robotic perception. One of the functions of COP  Egach time that an object is detected close to a ngertip
is to search for point cloud clusters, which are segmentegnsor, we calculate the position of the detected point in
point clouds that belong to objects on the table. For this, Bpace using forward kinematics. These points are continu-
identi es the points belonging to a support plane (the tablegysly assembled into a point cloud that describes the shape
in the complete point cloud obtained from the RGB-D sensopf the surface seen by the ngertip.
and removes them. Now the point clouds belonging to objects Correct calibration of the robots arms and hands is
on the table are left isolated from each other, and can hfxcessary to reach a good spatial precision. Also important
easily segmented. The result of this process can be seengi2 a good time synchronization and high data rates for
Figure[§. The point cloud representing the iced tea packag®sition streaming of all the involved joints.
has been correctly segmented and is shown in color on the|n TUM-Rosie, we use a kinematic description of the robot
left. that includes all the robot parts including the arms and hands.

We use the simple-grasp-planning (SGP) library[21] torhe position of the joints of the arms is reported at 1kHz,
plan possible grasping positions for the robot. The SGP us@gd the joints of the hands at 800Hz. The ngertip sensor
a simple description for the position and shape of the objedtreams proximity data at a rate of approximately 50Hz per
namely a 3D Gaussian distribution. This is just a point iensor.
space (x,y,z) describing the centroid of the object and the Our system calculates the forward kinematics of the chain
3D covariance (6x6 matrix) describing the shape. Both afgom the base of the robot to the ngertip in real time, and
estimated from the segmented point cloud of the object. Asublishes a new point cloud for the ngertip sensors at the
can be seen in Figufg 6 (right), the shape estimate of tRgme rate of the proximity data. Fig] 8 shows our robot
object is wrong when large parts of the object's surface argathering point cloud data from the back of the object.
occluded.

A grasp pose suggested by SGP is shown in[Rig. 7. Aftdr- Reconstructing the object shape (lling in the occluded
underestimating the size of the object (see Fig. 6), the robfces)
will try to grasp the object from the side, thinking itis smaller To make a better shape estimate, we can combine the point
than it really is, and will collide with the ngertips while cloud detected by the RGB-D sensor with the one from the
doing so. Our robot can detect such collisions using torquagertip sensors. The original method in SGP for nding
sensors on the nger joints, and use a reactive graspirthe 3D Gaussian representing the object iterates over all the
approach, so that it might still succeed in grasping, but points in the point cloud and gives them the same weight.
could push the object away and a re-detection would behis does not work well with the combined point cloud
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Fig. 9. Shape reconstruction of the object using the ngertips as proximit§fig. 10. Another example of the shape reconstruction. Top: A toaster is only

sensors. On the top, 3D points are acquired by moving the hand clopartially perceived by the RGB-D sensor, and the 3D Gaussian (centroid +

to the object, but without touching it. In the bottom, the result of shapeovariance) shape estimation work inadequately because most of the 3D

reconstruction using the combined point cloud from the RGB-D sensor ambints are located on the front face of the toaster. Bottom: The hand moved

the ngertip sensors is shown. close to the back face and an additional point cloud was obtained using
the ngertip sensors. The shape reconstruction represents the object much
better.

because the RGB-D data has many times more points thag
the ngertip data, effectively giving a smaller importance to
the last.

To solve this, we now use the following method for nding
the 3D Gaussian representation of the object:

The segmented object point cloud from the RGB-D
sensor and the point cloud from the ngertip sensors,
are joined together.
The convex hull of the complete point cloud is calcu-
lated.
The centroid and covariance of the convex hull is calcu-. . _ ) .

L . . . Fig. 11. Using the point cloud obtained from the ngertip sensors, the
lated, and this is the 3D Gaussian point representathgﬁOt can now nd better grasp poses.
needed by SGP.

In order to nd the centroid and covariance of a convex

hull, we need to iterate over all the triangles that describéie back face, the system created a shape estimate using the

it, using their areas as a weighting factor. We implementedescribed method that was much closer to reality.

the algorithm as described by Ericson[22], which treats the Fig.[I1 shows a two grasp positions suggested by SGP,

convex hull's polyhedron as a hollow body. taking into account the improved object shape estimation.
The results of this method can be seen in Fig. 9. Herdsing this system, the robot is now able to grasp objects

the robot explores the back of the iced tea package, movitgore reliably.

the ngertips close to the object. As more points in the back

of the object are detected, the estimated shape of the object

keeps improving, until it resembles the real shape of the iced When the ngertip sensor is close enough to an object, the

tea package closely. sensor can obtain detailed images of the surface's texture.
The system runs the estimation of the shape continuoushhis can be done while holding an object, or sliding the

and new shape estimates are available at a rate of 2 Hz. ngertip over it. These images contain enough information
Another example of the surface reconstruction is showto differentiate one object from another. The goal here is to

in Fig. [I0, where the robot perceives a bread toaster a@ive the robot the ability to learn the texture of objects, and

the kitchen counter. Since the top of the toaster has mamge this information to recognize them later. When grasping

metallic parts that are not detected by the RGB-D sens@n object, the robot can quickly decide if the right object

almost all of the points in the segmented point cloud are iwas grasped.

the frontal face of the toaster. The original shape estimation Texture is an important characteristic when recogniz-

is particularly bad. After moving the robot's hand close tang object surfaces. Gray Level Co-Occurrence Matrices

V. SURFACE CLASSIFICATION



Fig. 13. Three different surface images from the pancake-mix bottle. The
sensor registers details that are not visible to the human eye.

Fig. 12. Objects used for the surface classi cation experiment. Samples
were also taken holding the sensor in the air. The pancake mix bottle was
divided into two classes because their surfaces are very different: one for
the label, and the other for the plastic material of the bottle.

Fig. 14. Surface images corresponding to: acrylic table, wood and metal.

) Class Total frames | Training Testing The system is able to reliably classify the surfaces based on such images.
taken frames frames It is possible to appreciate the texture differences.

1 acrylic table 200 160 40

2 wood 200 160 40

3 air 200 160 40 eye. Figure 14 shows example surface textures of three

4 shampoo 400 320 80 different objects: The acrylic table, wood and a piece of

5 lego 200 160 40 metal.

6 cup 600 480 120 Before running the classi cation experiments we randomly

7 | tomato soup 600 480 120 build a training and a testing set. For each object class, 80%

8 | Dbread board 200 160 20 of the pictures are used to train the SVM and the other 20%

9 | pancake label 200 320 80 for testing. From each 900 pixel image, a 16x16 normalized

10 | pancake bottle 200 320 80 GLCM _is compu_ted. _GLCM is obtained by rs_t mapping

11 yogurt 600 280 120 gach p|xel's original |n.ten3|ty value (0. - 255) into a new

7 ketchup 600 280 120 |n.ten3|ty value (0 - 15 in our case}. This way, a new image

13 cod tea 500 280 120 with only 16 tones 'of gray |s_obtalned. Ngxt, the algorithm

counts how often pixels with intensity valuere “close” to

ones with intensity valu¢. We use the 8 closest neighbor
pixels of the one that is currently checked. This means, the
algorithm scans the whole image, and for each pjxelt
checks the intensity values of its 8 neighbersl, ..., png
incrementing thei( j) element of the resulting GLCM, given
that the intensity value opx is i and that of the neighbor
(GLCM) also known as Gray-Tone Spatial-Dependence Maeing inspected i$. Reviewing all 8 neighbors, makes the
trices [23] have proven to be a good method to abstra@LCM and thus the classi cation more independent of image
texture information from gray tone images. Using them amotation.
input for a support vector machine algorithm (SVM)[24], we The GLCM is then normalized and reorganized into a 256
classify surface images from the sensors. element vector. The normalized shutter speed value of that
To evaluate the performance of the surface recognitioiname is also added to the feature vector. This value adds
system, we chose several test objects available in our téstportant information, since with it, the sensor compensates
kitchen. Thirteen object surfaces (see Fig. 12) were recordéar differences in surface re ectivity. With the feature vectors
by sliding a ngertip sensor over the objects. These surfacasady, the SVM can now be trained and tested. We used
are the classes to be recognized by the SVM. Objeclibsvni24] with the following con guration: RBF kernel,
with more heterogeneous surfaces require recording for@ SVC type, gamma = 1.0 and cost = 6.0.
longer period of time in order to cover the different regions. The results of the classi cation experiment are registered
This translates into more image frames. The shutter speadTable Il. These values can vary slightly, depending on the
information from the sensor is also saved for each frameandomly selected training and testing sets. The recognition
Table | shows the list of classes and the amount of frameystem performs very well, specially considering that several
taken for each one. surfaces were very similar to each other, like the product
Fig. 13 shows three images of the pancake bottle surfadabels.
The sensor reveals details that are not visible to the humanlt is important to note that because of the high percentage

TABLE |
LIST OF THE DIFFERENT CLASSES USED IN THE CLASSIFICATION
EXPERIMENT AND THE NUMBER OF SURFACE SAMPLES RECORDED FOR
EACH ONE.



112|3|4|5|6|7|8]9|10/11|12|13 1/12|3|4|5(6|7(8|9
139 1 1(48
21133 3 1 1 1 2 47 1
3 40 3 47| 1
4 51 10| 2 7128 4 47 1
5 1 36 1 1|1 5 48
6 117 8911|2414 121 2|2 6 48
7125 411|179 715|664 7 471 |1
8 1 33 14 8 46| 2
9 3 1|10 66 9 2 111|444
10 2 1 1 721 2|2
11 1 5 12 4 2 |66(23] 7 TABLE Il
1212131 1141211211213 115/79] 8 CONFUSION MATRIX FOR THE SECOND CLASSIFICATION EXPERIMENT
13/ 313 1 213 61993 THE CLASSID FOR EACH MATERIAL SURFACE IS GIVEN INFIG. 15.
TABLE I
CONFUSION MATRIX FOR THE FIRST CLASSIFICATION EXPERIMENTTHE
LEFT COLUMN SHOWS THE REAL CLASSID AND THE FIRST ROW SHOWS While doing pick and place tasks, the objects are rigidly
THE CLASSIFICATION RESULT grasped by the robot, and any movement detected by the
ngertip sensors is directly translated to slip of the object.

Good slip estimation is difcult based on data from
the typical sensors available on robotic grippers: Position
sensors, or force/torque. A good example of this problem are
glass bottles: Because of their regular shape and low-friction
surface, they can slide out of the hand without making
signi cant changes to the position and force signals of the
gripper.

The proposed ngertip sensor excels at this task, and can
deliver reliable slip data at approximately 50Hz per sensor or
up to 200Hz if only one sensor is selected. The robot can use
this information to adjust the grasping force while carrying

Fig. 15. Macro images of the different material surfaces used in thgn object, or decide to hold the object with a second hand

second classi cation experiment. From left to right and from top to bottomin order to keep it from falllng
(1)met§1I (2)table_melam|ne surface, (3)paper, (4)wood, (5)plastic, (6)glass, To demonstrate this capablllty we implemented the auto-
(7)fabric, (8)napkin paper and (9)cardboard. . . . . . .
matic adjustment of the grasping force to avoid object slip in
the hand, keeping the force close to the minimum necessary.
é[he robot grasps an object with an initial default force, and
reduces the applied force on the ngertips until slip it
?tected Then it immediately holds the object a bit harder to
eep it stable. If more slip is detected, the force is increased
images obtained in under one second. urther. Using this simple method, the robot can hold objects
between the ngers stably, but using a low force. A good side

Several of the objects used for the classi cation exeffect of this method is that the hands' motors stay much
periment have very similar surfaces, especially the ones
cooler while holding an object, since the torque they have to

with printed labels. So we also evaluated the classi cation

ply is now lower.
performance on surfaces of different raw materials. For eac Fia. 16 sh he relationshio b ing f d
surface 240 frames were taken, and again, 80% of them were 9. 15 St OWSt. ere atlons_ P etyveen grasping force an
tected slip during a grasping action. The slip is detected

used to train the SVM and 20% were used for testing. Fig. 1 | q i h d | p
shows the textures to be classi ed. The results are regster%?ry and quickly enough to avoid any large movement o
e object. Also during dynamic movements of the arm, the

in table IlI.
hand can adjust the grasping force before letting the object
slip away more than a few millimeters.

of correctly classi ed vectors, the system can classify th
surface correctly using a small number of samples. The seé
sor delivers images at approximately 50 Hz, so that a corre

and certain classi cation can be expected by classifying th

VI. SLIP DETECTION

The ngertip sensor is capable of detecting the relative VIl. ACKNOWLEDGMENTS
motion of objects located at a short distance from the sensor's
lens. The sensor is installed in the ngertip so that when the We would like to thank Piotr Esden-Tempski, Julian
hand is grasping an object, the distance to the surface Bsunner, and Frank Ehmann, who have contributed to the
optimal. development of the sensor and the project.
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Fig. 16. Finger torque and slip signals during the automatic adjustment
of grasping force. (a) The ngers moved to grasp the object, and they hoI[d
it. After (b), the torque is slowly reduced until the object moves a smal 11]
distance, and slip is detected in (c). At (d), the ngers have now grasped
the object stably again, but with a lower force. If the object is disturbed
externally (e and f), the ngers apply more force. (12

VIII. CONCLUSION AND FUTURE WORK [13]

In this paper, we presented a new sensor for robot nger-
tips, and several ways how it can improve robotic graspin@“]
and manipulation. The sensor is very versatile, and there are
still other possibilities to explore.

Each of the sensor's three modalities is useful in different
sections of a typical pick and place action: In situationg;s
where only part of the object is visible to range sensors,
it can complete the 3D shape information, and this in turn
makes it possible for the grasp planner to give good grasgy)
pose suggestions. As a surface texture sensor, the robot can
use it to nd objects whose texture it has learned previousl \7
or to check the identity of an object it has grasped. Finalli ]
the sensor can make carrying objects safer, as the robot gets
a warning that the grasped object is slipping, and can take
corrective actions. (18]

In a follow-up paper, we plan to discuss methods for the
automatic exploration of occluded sections of objects, and ti&]
functionality as a pre-grasp sensor: To position the ngers
around objects to maximize the grasp success chances.

Finally, one of our long term goals is to have closed-loopeo]
grasping, where the pose of the object is tracked continuously
in real-time, through a combination of proximity sensors in
the ngertips and tracking algorithms for RGB-D sensors in21]
the head. We believe that this will make possible the reliable
grasping of moving objects.
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