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Abstract— Better sensing is crucial to improve robotic grasp-
ing and manipulation. Most robots currently have very limited
perception in their manipulators, typically only �ngertip posi-
tion and velocity. Additional sensors make richer interactions
with the objects possible. In this paper, we present a versatile,
robust and low cost sensor for robot �ngertips, that can
improve robotic grasping and manipulation in several ways:
3D reconstruction of the shape of objects, material surface
classi�cation, and object slip detection. We extended TUM-
Rosie, our robot for mobile manipulation, with �ngertip sensors
on its humanoid robotic hand, and show the advantages of the
�ngertip sensor integrated in our robot system.

I. I NTRODUCTION

Our goal is to improve the reliability of robotic grasping
and object manipulation by enhancing the sensing capabili-
ties of robotic manipulators. Adding sensors to robot hands
�lls a widespread gap in humanoid and service robotics:
As soon as a robot gets close and grasps an object, the
view from the 'head' is heavily occluded by the hands and
arms. Meaning that the best sensors available (cameras/range
sensors) will not have a clear view of the object anymore, and
the grasping and manipulation action will take place without
good feedback information. The sensor that we propose in
this paper attacks this problem in several ways.

Robots interact with the world using their manipulators,
and there is a great range of them: from simple parallel-jaw
grippers to complex humanoid hands with many degrees of
freedom. Their basic function is to �xate objects within their
'�ngers' by applying a certain amount of force, and letting
friction do its job. An important limitation is that most of
them only have proprioceptive sensing, usually the position
and velocity of the �ngers, so they can only indirectly gather
information about the objects they are manipulating.

In this paper we propose a sensor that can be installed di-
rectly in the �ngertips, and extend the perceptual capabilities
of the hand to:

1) Reconstruct the 3D shape of objects, specially the
occluded parts close to the chosen grasping area.

2) Recognize the surface texture of objects (quickly and
accurately).

3) Detect slip of the object while manipulating (lift-
ing/holding).
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Fig. 1. TUM-Rosie, our mobile manipulation platform. Fingertip sensors
installed in its right hand improve autonomous grasping, let it recognize
object surfaces, and detect object slip.

Fig. 2. System components (left image, clockwise): Fingertip sensor, SPI
controller, FLOSS-JTAG. Right: A 3D-printed �ngertip for the DLR/HIT
Hand.

In order to realize those capabilities, we have designed a
�ngertip sensor (Fig. 2) that has the following basic modes:

� Proximity sensor: It can measure the distance to objects
with a range of 1-10mm. This is the distance necessary
for pre-touch sensing, that can be used for reconstruct-
ing the occluded shape of the object, or for pre-grasp
�nger positioning. This is particularly important for
improving autonomous grasping.

� Surface image acquisition: The sensor transmits a
30x30pixel image from an area of the object of around
1 square mm. This data is used for surface recognition.

� Optical-�ow measurement: The sensor can measure tan-
gential displacements of the objects held in the �ngers,
and be used as a slip sensor.



Fig. 3. Fingertip sensor size comparison, and the sensor on top of a �ngertip
of our DLR/HIT 4-Finger robot hand.

We have installed the �ngertip sensors in our robot, TUM-
Rosie (Fig. 1). In the following sections we show how they
can be used to improve robotic grasping. Taking a typical
pick and place scenario as an example: The robot will use
the �ngertip sensor's functionality as described above. First,
it can do a 3D shape reconstruction in order to more reliably
grasp the object. As soon as the object is in the hand,
surface images can be acquired to recognize the object's
surface texture and con�rm its identity. Finally, during lifting
and carrying of the object, the slip detection can alert of
undesired movements of the object.

II. RELATED WORK

The idea of adding sensing to the manipulators is not new.
In fact, in the early days of robotics, having sensing on the
robot's hand was a way to concentrate the limited computing
resources to the place where the contact could happen. It was
a type of data �lter: Instead of observing a big area with a
camera and processing a lot of data to �nd the position of
the hand, it was better to have local sensors on the hand react
to tactile or other input.

There was a lot of interesting work in tactile sensors, and
how they could be used to gather information through contact
and then to reconstruct object shapes[1]. Some years later
there were already interesting overview papers[2], explaining
principles of operation of many different sensors for manip-
ulators: Tactile sensors, force/torque sensors, surface normal
sensors, actuator effort sensors, and others. These ideas are
still valid today. [3] is a recent reference of tactile sensing
technologies for robots.

As computers became faster, it was possible to operate on
bigger data sets, and there was a shift towards environment
sensing. Initially this meant a lot of work in computer vision,
and most recently in 3D sensors. As an example, today we
see a lot of attention to algorithms that work on point clouds
from real-time depth sensors which are even put together to
make detailed maps of the environment. We are starting to
come full circle, and the advantages of manipulator sensing
become clear again. Thanks to miniaturization in electronics,
and to more robust equipment, there are many new sensing
modalities available for robot hands or grippers.

In this paper both approaches come together, as we use
realtime 3D depth sensors to model the shape of an object,
and �ngertip sensors to reconstruct the missing information
because of occlusions.

Recent work has shown the usefulness of pre-touch sens-
ing. These systems use proximity sensors, typically based on

Fig. 4. Three �ngertip sensors installed in the DLR/HIT hand (thumb,
index and ring �ngers).

capacitive[4] or infrared[5] principles, which are installed
in a robot's gripper. They are used to position the �ngers
correctly for grasping, detect interaction with humans, and
to grasp objects that could not be detected precisely through
other means. Also, a grasp controller based on human control
schemes shows the advantages of tactile sensing in [6],
including mechanisms to use grip force estimation and slip
detection using pressure sensors on the PR2 robot.

We have also seen fast development in the �eld of robotic
skin. Advanced designs[7] include multi-modal sensors, in-
cluding infrared proximity sensors. There is still work being
done on reducing the size of the skin units, and making them
more reliable, but we expect to see a more widespread use.
Designs using capacitive sensors [8] are already being used
to cover �ngertips and larger areas.

Also related are systems that include a stereo camera[9], or
a depth sensor on the robot's gripper. These systems deliver
very rich point clouds from the environment in the close
vicinity of the gripper, which has a very different point of
view than the robot's head. This is useful for dealing with
occlusions. One disadvantage is that the arms are often not
long enough to capture a view from behind an object.

As early as 2002, optical mouse sensors have been used
for odometry in miniature robots [10], and their use as a
slip sensor is a only natural progression. More recently, they
have been used to measure slip for haptic applications during
contact [11].

There are promising studies of surface texture recognition
done by robots. [12] shows good results obtaining data from
a metal pin stroking a surface. In [13], several machine learn-
ing algorithms are analyzed for surface texture recognition
using data from an advanced biologically inspired �nger.

III. SYSTEM OVERVIEW

TUM-Rosie is our mobile manipulation robot for human
indoor environments. The robot has two KUKA LWR-4[14]
lightweight robot arms, with DLR/HIT[15] hands as manip-
ulators. Both arms and hands are state of the art devices,
and have much better proprioceptive sensing capabilities
than most other robots. The hands include 3-DOF torque
sensing in each �nger and report the complete state (position,
velocity, torque) of all the joints with a high framerate.
Additionally, in order to improve the capabilities of our
system, we have installed three �ngertip sensors (Fig. 4) in
the robot's right hand.



A. Fingertip sensor

The �ngertip sensor is built around the Avago Technolo-
gies ADNS-9500[16], a high-end laser navigation sensor
designed for computer mice. The ADNS-9500 is essentially
a miniature 30x30pixel high-speed camera with an integrated
laser emitter and a microcontroller. The collimated laser light
makes minuscule cracks and surface characteristics visible
to the camera, so that it can detect optical �ow (motion)
even on dif�cult surfaces like glass or porcelain. The internal
registers and the image obtained by the on-board camera
are accessible over a high-speed (2Mbps) SPI bus. This
makes it possible to use the sensor as a simple optical
proximity sensor (by looking at how much laser light is
bouncing off the objects), as a miniature surface camera
(for surface recognition), and as a slip sensor (measuring the
displacement of the surface on the �ngertips, like a regular
computer mouse).

We developed the following components of the �ngertip
sensor system (Fig. 2):

� A miniature board (15x15mm) with support electronic
components for the Avago ADNS-9500 sensor. Using
this board, the sensor can be installed in small places,
and only has one small connector for the SPI data bus
and power.

� The SPI-controller: A microcontroller board that con-
trols up to four ADNS-9500 sensors (one for each
�ngertip in our robot hand). This board is based on
an STM32 72MHz microcontroller, and deals with the
low level control of the Avago sensors.

� A slightly modi�ed version of the FLOSS/JTAG, a high-
speed USB to serial converter and JTAG programmer,
for communication with the computer and easy pro-
gramming of the �rmware of the SPI-controller.

The �ngertip sensor has been developed as a free
software/free hardware project, so all the information
necessary for building it is available online under
free (as in freedom) licenses at this address:
http://toychest.in.tum.de/wiki/projects:�ngertip. This
includes all the schematics, the circuit board designs,
and the software.

The cost of the system is very low: It is possible to get
all the components for a setup with four �ngertip sensors,
as needed for installation on humanoid robot hands, for ap-
proximately $200 USD. We also used a 3D-Printing service
to make the new �ngertip housings, for a cost of around $20
USD each. This has an excellent cost/bene�t ratio, taking
into account the additional capabilities given to the robot
hand.

The size of each �ngertip sensor is 15 x 15 x 16mm
(See Fig. 3), small enough to be installed in the jaws of
a parallel-jaw gripper, or the �ngertips of many robot hands.
The dimensions of the two other boards put together is 34.5
x 17 x 15mm.

The complete system communicates with the computer
over a USB connection, which also provides the supply
voltage.

Fig. 5. TUM-Rosie's perception of a iced tea package on the kitchen
counter. On the top left, the point of view of the robot is shown. The other
images show the extension of the occlusion: the robot does not perceive
any 3D points on the left side, right side, or the back of the object. This
is a typical problem when using sensors mounted on the robot's head: the
perspective is good to see a lot of the environment, but often only the frontal
faces of the objects can be seen.

B. Integration into the robot hand of TUM-Rosie

We use ROS[17] as a communication middleware for
integrating the different components of our robot, and the
ROS nodes used for capabilities described in this paper are
accessible as a part of the of�cial TUM-ROS[18] repository.

The corresponding nodes stream data in a way that is easy
to use for other ROS components. For example, the proximity
sensing is combined with position information obtained from
forward kinematics to generate a standard ROS 3D point
cloud.

IV. 3D SHAPE RECONSTRUCTION: IMPROVING THE

OBJECT SHAPE ESTIMATION FOR ROBOT GRASPING

The laser in the ADNS-9500 sensor emits infrared light
at an angle, so that the maximum amount of light will be
re�ected when an object is at a certain distance from the
sensor, and decreases as the object moves further away. It
is possible to estimate the distance to the nearest object by
evaluating the values of the internal registers of the ADNS-
9500 sensor, specially the shutter speed and frame period of
the internal camera. These values are adjusted continuously
by the sensor, so that we can detect the presence of an object
positioned 1-10mm front of the sensor reliably. This is the
functionality required for its use as a proximity sensor. When
such sensors are used in robotic grippers, they are sometimes
known as pre-touch sensors.

We use the proximity information to reconstruct the shape
of an object without touching it. Our robot has a RGB-D
(Xbox KinectTM) sensor on its head that delivers high quality
point clouds from objects, but they are often incomplete
because of occlusions. The �ngertip sensors complement
our perception system for grasping by delivering shape



Fig. 6. Left: The point cloud corresponding to the iced tea package has
been segmented and is shown in color. Right: The centroid and covariance
of the points represent the object for use in grasp planning. The centroid is
marked by the frame axes, and the ellipsoid represents the covariance. Note
that the robot underestimates the size of the object considerably.

information from occluded areas, specially the ones around
possible grasping locations.

A. The occlusion problem

Let us observe a rectangular iced tea package using the
RGB-D sensor mounted on the robot's head. Fig. 5 shows the
point cloud data as it is perceived. The data looks complete
from the point of view of the robot, but after looking at
the points that represent the rectangular box from the side,
the missing information becomes evident. The robot has
basically no information from the sides or back of the box.

We use COP[19], [20], a software developed in our
institute for robotic perception. One of the functions of COP
is to search for point cloud clusters, which are segmented
point clouds that belong to objects on the table. For this, it
identi�es the points belonging to a support plane (the table)
in the complete point cloud obtained from the RGB-D sensor,
and removes them. Now the point clouds belonging to objects
on the table are left isolated from each other, and can be
easily segmented. The result of this process can be seen in
Figure 6. The point cloud representing the iced tea package
has been correctly segmented and is shown in color on the
left.

We use the simple-grasp-planning (SGP) library[21] to
plan possible grasping positions for the robot. The SGP uses
a simple description for the position and shape of the object,
namely a 3D Gaussian distribution. This is just a point in
space (x,y,z) describing the centroid of the object and the
3D covariance (6x6 matrix) describing the shape. Both are
estimated from the segmented point cloud of the object. As
can be seen in Figure 6 (right), the shape estimate of the
object is wrong when large parts of the object's surface are
occluded.

A grasp pose suggested by SGP is shown in Fig. 7. After
underestimating the size of the object (see Fig. 6), the robot
will try to grasp the object from the side, thinking it is smaller
than it really is, and will collide with the �ngertips while
doing so. Our robot can detect such collisions using torque
sensors on the �nger joints, and use a reactive grasping
approach, so that it might still succeed in grasping, but it
could push the object away and a re-detection would be

Fig. 7. A grasp planned by SGP based only on shape information from
the RGB-D sensor, where the size of the object is underestimated. The
representation of the hand is shown in dark red.

Fig. 8. The robot explores the shape of an object by moving the �ngers
close to it.

necessary. It is better to use the proximity sensors to avoid
pushing the object in the �rst place.

B. Obtaining a point cloud using proximity data

Each time that an object is detected close to a �ngertip
sensor, we calculate the position of the detected point in
space using forward kinematics. These points are continu-
ously assembled into a point cloud that describes the shape
of the surface seen by the �ngertip.

Correct calibration of the robot's arms and hands is
necessary to reach a good spatial precision. Also important
are a good time synchronization and high data rates for
position streaming of all the involved joints.

In TUM-Rosie, we use a kinematic description of the robot
that includes all the robot parts including the arms and hands.
The position of the joints of the arms is reported at 1kHz,
and the joints of the hands at 800Hz. The �ngertip sensor
streams proximity data at a rate of approximately 50Hz per
sensor.

Our system calculates the forward kinematics of the chain
from the base of the robot to the �ngertip in real time, and
publishes a new point cloud for the �ngertip sensors at the
same rate of the proximity data. Fig. 8 shows our robot
gathering point cloud data from the back of the object.

C. Reconstructing the object shape (�lling in the occluded
faces)

To make a better shape estimate, we can combine the point
cloud detected by the RGB-D sensor with the one from the
�ngertip sensors. The original method in SGP for �nding
the 3D Gaussian representing the object iterates over all the
points in the point cloud and gives them the same weight.
This does not work well with the combined point cloud



Fig. 9. Shape reconstruction of the object using the �ngertips as proximity
sensors. On the top, 3D points are acquired by moving the hand close
to the object, but without touching it. In the bottom, the result of shape
reconstruction using the combined point cloud from the RGB-D sensor and
the �ngertip sensors is shown.

because the RGB-D data has many times more points than
the �ngertip data, effectively giving a smaller importance to
the last.

To solve this, we now use the following method for �nding
the 3D Gaussian representation of the object:

� The segmented object point cloud from the RGB-D
sensor and the point cloud from the �ngertip sensors
are joined together.

� The convex hull of the complete point cloud is calcu-
lated.

� The centroid and covariance of the convex hull is calcu-
lated, and this is the 3D Gaussian point representation
needed by SGP.

In order to �nd the centroid and covariance of a convex
hull, we need to iterate over all the triangles that describe
it, using their areas as a weighting factor. We implemented
the algorithm as described by Ericson[22], which treats the
convex hull's polyhedron as a hollow body.

The results of this method can be seen in Fig. 9. Here
the robot explores the back of the iced tea package, moving
the �ngertips close to the object. As more points in the back
of the object are detected, the estimated shape of the object
keeps improving, until it resembles the real shape of the iced
tea package closely.

The system runs the estimation of the shape continuously
and new shape estimates are available at a rate of 2 Hz.

Another example of the surface reconstruction is shown
in Fig. 10, where the robot perceives a bread toaster on
the kitchen counter. Since the top of the toaster has many
metallic parts that are not detected by the RGB-D sensor,
almost all of the points in the segmented point cloud are in
the frontal face of the toaster. The original shape estimation
is particularly bad. After moving the robot's hand close to

Fig. 10. Another example of the shape reconstruction. Top: A toaster is only
partially perceived by the RGB-D sensor, and the 3D Gaussian (centroid +
covariance) shape estimation work inadequately because most of the 3D
points are located on the front face of the toaster. Bottom: The hand moved
close to the back face and an additional point cloud was obtained using
the �ngertip sensors. The shape reconstruction represents the object much
better.

Fig. 11. Using the point cloud obtained from the �ngertip sensors, the
robot can now �nd better grasp poses.

the back face, the system created a shape estimate using the
described method that was much closer to reality.

Fig. 11 shows a two grasp positions suggested by SGP,
taking into account the improved object shape estimation.
Using this system, the robot is now able to grasp objects
more reliably.

V. SURFACE CLASSIFICATION

When the �ngertip sensor is close enough to an object, the
sensor can obtain detailed images of the surface's texture.
This can be done while holding an object, or sliding the
�ngertip over it. These images contain enough information
to differentiate one object from another. The goal here is to
give the robot the ability to learn the texture of objects, and
use this information to recognize them later. When grasping
an object, the robot can quickly decide if the right object
was grasped.

Texture is an important characteristic when recogniz-
ing object surfaces. Gray Level Co-Occurrence Matrices



Fig. 12. Objects used for the surface classi�cation experiment. Samples
were also taken holding the sensor in the air. The pancake mix bottle was
divided into two classes because their surfaces are very different: one for
the label, and the other for the plastic material of the bottle.

ID Class Total frames
taken

Training
frames

Testing
frames

1 acrylic table 200 160 40
2 wood 200 160 40
3 air 200 160 40
4 shampoo 400 320 80
5 lego 200 160 40
6 cup 600 480 120
7 tomato soup 600 480 120
8 bread board 200 160 40
9 pancake label 400 320 80
10 pancake bottle 400 320 80
11 yogurt 600 480 120
12 ketchup 600 480 120
13 iced tea 600 480 120

TABLE I

L IST OF THE DIFFERENT CLASSES USED IN THE CLASSIFICATION

EXPERIMENT AND THE NUMBER OF SURFACE SAMPLES RECORDED FOR

EACH ONE.

(GLCM) also known as Gray-Tone Spatial-Dependence Ma-
trices [23] have proven to be a good method to abstract
texture information from gray tone images. Using them as
input for a support vector machine algorithm (SVM)[24], we
classify surface images from the sensors.

To evaluate the performance of the surface recognition
system, we chose several test objects available in our test
kitchen. Thirteen object surfaces (see Fig. 12) were recorded
by sliding a �ngertip sensor over the objects. These surfaces
are the classes to be recognized by the SVM. Objects
with more heterogeneous surfaces require recording for a
longer period of time in order to cover the different regions.
This translates into more image frames. The shutter speed
information from the sensor is also saved for each frame.
Table I shows the list of classes and the amount of frames
taken for each one.

Fig. 13 shows three images of the pancake bottle surface.
The sensor reveals details that are not visible to the human

Fig. 13. Three different surface images from the pancake-mix bottle. The
sensor registers details that are not visible to the human eye.

Fig. 14. Surface images corresponding to: acrylic table, wood and metal.
The system is able to reliably classify the surfaces based on such images.
It is possible to appreciate the texture differences.

eye. Figure 14 shows example surface textures of three
different objects: The acrylic table, wood and a piece of
metal.

Before running the classi�cation experiments we randomly
build a training and a testing set. For each object class, 80%
of the pictures are used to train the SVM and the other 20%
for testing. From each 900 pixel image, a 16x16 normalized
GLCM is computed. GLCM is obtained by �rst mapping
each pixel's original intensity value (0 - 255) into a new
intensity value (0 - 15 in our case). This way, a new image
with only 16 tones of gray is obtained. Next, the algorithm
counts how often pixels with intensity valuei are “close” to
ones with intensity valuej. We use the 8 closest neighbor
pixels of the one that is currently checked. This means, the
algorithm scans the whole image, and for each pixelpx it
checks the intensity values of its 8 neighborspn1, ..., pn8,
incrementing the (i, j) element of the resulting GLCM, given
that the intensity value ofpx is i and that of the neighbor
being inspected isj. Reviewing all 8 neighbors, makes the
GLCM and thus the classi�cation more independent of image
rotation.

The GLCM is then normalized and reorganized into a 256
element vector. The normalized shutter speed value of that
frame is also added to the feature vector. This value adds
important information, since with it, the sensor compensates
for differences in surface re�ectivity. With the feature vectors
ready, the SVM can now be trained and tested. We used
libsvm[24] with the following con�guration: RBF kernel,
C_SVC type, gamma = 1.0 and cost = 6.0.

The results of the classi�cation experiment are registered
in Table II. These values can vary slightly, depending on the
randomly selected training and testing sets. The recognition
system performs very well, specially considering that several
surfaces were very similar to each other, like the product
labels.

It is important to note that because of the high percentage



1 2 3 4 5 6 7 8 9 10 11 12 13
1 39 1
2 1 33 3 1 1 1
3 40
4 51 10 2 7 2 8
5 1 36 1 1 1
6 1 7 89 1 2 4 12 2 2
7 2 5 4 1 1 79 7 5 6 6 4
8 1 1 33 1 4
9 3 1 10 66
10 2 1 1 72 2 2
11 1 5 12 4 2 66 23 7
12 2 3 1 1 4 2 1 1 3 15 79 8
13 3 3 1 2 3 6 9 93

TABLE II

CONFUSION MATRIX FOR THE FIRST CLASSIFICATION EXPERIMENT. THE

LEFT COLUMN SHOWS THE REAL CLASSID AND THE FIRST ROW SHOWS

THE CLASSIFICATION RESULT.

Fig. 15. Macro images of the different material surfaces used in the
second classi�cation experiment. From left to right and from top to bottom:
(1)metal, (2)table melamine surface, (3)paper, (4)wood, (5)plastic, (6)glass,
(7)fabric, (8)napkin paper and (9)cardboard.

of correctly classi�ed vectors, the system can classify the
surface correctly using a small number of samples. The sen-
sor delivers images at approximately 50 Hz, so that a correct
and certain classi�cation can be expected by classifying the
images obtained in under one second.

Several of the objects used for the classi�cation ex-
periment have very similar surfaces, especially the ones
with printed labels. So we also evaluated the classi�cation
performance on surfaces of different raw materials. For each
surface 240 frames were taken, and again, 80% of them were
used to train the SVM and 20% were used for testing. Fig. 15
shows the textures to be classi�ed. The results are registered
in table III.

VI. SLIP DETECTION

The �ngertip sensor is capable of detecting the relative
motion of objects located at a short distance from the sensor's
lens. The sensor is installed in the �ngertip so that when the
hand is grasping an object, the distance to the surface is
optimal.

1 2 3 4 5 6 7 8 9
1 48
2 47 1
3 47 1
4 47 1
5 48
6 48
7 47 1
8 46 2
9 2 1 1 44

TABLE III

CONFUSION MATRIX FOR THE SECOND CLASSIFICATION EXPERIMENT.

THE CLASS ID FOR EACH MATERIAL SURFACE IS GIVEN INFIG. 15.

While doing pick and place tasks, the objects are rigidly
grasped by the robot, and any movement detected by the
�ngertip sensors is directly translated to slip of the object.

Good slip estimation is dif�cult based on data from
the typical sensors available on robotic grippers: Position
sensors, or force/torque. A good example of this problem are
glass bottles: Because of their regular shape and low-friction
surface, they can slide out of the hand without making
signi�cant changes to the position and force signals of the
gripper.

The proposed �ngertip sensor excels at this task, and can
deliver reliable slip data at approximately 50Hz per sensor or
up to 200Hz if only one sensor is selected. The robot can use
this information to adjust the grasping force while carrying
an object, or decide to hold the object with a second hand
in order to keep it from falling.

To demonstrate this capability we implemented the auto-
matic adjustment of the grasping force to avoid object slip in
the hand, keeping the force close to the minimum necessary.
The robot grasps an object with an initial default force, and
it reduces the applied force on the �ngertips until slip it
detected. Then it immediately holds the object a bit harder to
keep it stable. If more slip is detected, the force is increased
further. Using this simple method, the robot can hold objects
between the �ngers stably, but using a low force. A good side
effect of this method is that the hands' motors stay much
cooler while holding an object, since the torque they have to
apply is now lower.

Fig. 16 shows the relationship between grasping force and
detected slip during a grasping action. The slip is detected
early and quickly enough to avoid any large movement of
the object. Also during dynamic movements of the arm, the
hand can adjust the grasping force before letting the object
slip away more than a few millimeters.
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Fig. 16. Finger torque and slip signals during the automatic adjustment
of grasping force. (a) The �ngers moved to grasp the object, and they hold
it. After (b), the torque is slowly reduced until the object moves a small
distance, and slip is detected in (c). At (d), the �ngers have now grasped
the object stably again, but with a lower force. If the object is disturbed
externally (e and f), the �ngers apply more force.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we presented a new sensor for robot �nger-
tips, and several ways how it can improve robotic grasping
and manipulation. The sensor is very versatile, and there are
still other possibilities to explore.

Each of the sensor's three modalities is useful in different
sections of a typical pick and place action: In situations
where only part of the object is visible to range sensors,
it can complete the 3D shape information, and this in turn
makes it possible for the grasp planner to give good grasp
pose suggestions. As a surface texture sensor, the robot can
use it to �nd objects whose texture it has learned previously,
or to check the identity of an object it has grasped. Finally,
the sensor can make carrying objects safer, as the robot gets
a warning that the grasped object is slipping, and can take
corrective actions.

In a follow-up paper, we plan to discuss methods for the
automatic exploration of occluded sections of objects, and the
functionality as a pre-grasp sensor: To position the �ngers
around objects to maximize the grasp success chances.

Finally, one of our long term goals is to have closed-loop
grasping, where the pose of the object is tracked continuously
in real-time, through a combination of proximity sensors in
the �ngertips and tracking algorithms for RGB-D sensors in
the head. We believe that this will make possible the reliable
grasping of moving objects.
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