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Abstract

Real world heterogeneous scenes contain objects of a large variety of forms,
surfaces, colors and textures, thus multi-modal approaches are needed to
deal with their challenges. A promising method of combining various sources
of information are ensemble methods which allow on the fly integration of
classification modules, specific to a single sensor modality, into a classification
process. These modular and extensible approaches have the advantage that
they do not require that a single method copes with every eventuality, but
combine existing specialized methods to overcome their weaknesses.

In addition, the rapid growth of the perception field means that com-
paring, evaluating, sharing and combining the available approaches becomes
increasingly relevant. In this article we describe a novel training strategy for
ensembles of strong learners that not only outperform the best member but
also the best classifier trained on the concatenation of features.

The method was evaluated using a large RGBD dataset containing Kinect
scans of 300 objects and special use-cases are presented that highlight how
ensemble learning can be used to improve classification results.

Keywords: strong learner, ensemble, multi-modal, object recognition

Email address: {marton, seidelf, balintbe, beetz}@cs.tum.edu

(Zoltan-Csaba Marton, Florian Seidel, Ferenc Balint-Benczedi, Michael Beetz)
URL: http://ias.cs.tum.edu (Zoltan-Csaba Marton, Florian Seidel, Ferenc

Balint-Benczedi, Michael Beetz)

Preprint submitted to Pattern Recognition Letters July 19, 2012



1. Introduction

Perception capabilities are an important component of cognitive systems,
with object recognition preceding many high-level functions for example in
the area of robotics and human-machine interaction. Intelligent systems
operating in human environments have a huge variety of objects to deal
with, and some of them present special problems (texture-less, shiny, etc).
There are multiple approaches that have been shown to be able to classify
some of the objects that might appear in such settings. There are, however,
inherent limitations in these approaches, and as described by Kragic and
Vincze (2009), there is no robust and large-scale solution yet.

As we will discuss, these object classification tasks can be made signif-
icantly more robust if multiple sources of information are used. Similarly,
surveillance tasks in smart environments could benefit from exploiting in-
formation coming from multiple modalities, or from different sources. Since
each perception method captures only some aspect of the objects, the situa-
tion is similar to the old story about the six blind men trying to describe an
elephant based on a single touch. Clearly, a correct combination of different
sensor modalities for classification would improve results.

Combining multiple sensor modalities to improve detection can be done
in general either by combining multiple features in a single classification
pipeline, or by separate processing pipelines for each modality whose results
are combined. The former approach is pursued by Lai et al. (2011b), where
a combination of visual and depth cues is used. We explored the latter ap-
proach in (Marton et al., 2011), highlighting the limitations of the different
sensors, and exploiting that not all features need to be checked if there is a
subset of them that uniquely describes the object. This modular approach,
with the right processing units, allowed an incremental learning of new ob-
jects, but relied on some assumptions that do not always hold.

While both approaches use different features from different sensing modal-
ities, each of them has inherent drawbacks. Combining different features by
concatenation produces very high-dimensional features that produce exces-
sively long training (and possibly classification) times. Additionally, any
change in the used features requires a complete re-training of the whole clas-
sifier. On the other hand, it is a simple way of obtaining a very accurate
classifier that considers all the useful information. The sequential method is
very modular, and some features can be left out if needed (e.g. those from
camera images in low light conditions) or new ones added without the need
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to re-train the whole system, but the errors get accumulated from each step,
and correlations can not be exploited. Ideally, one would like to have a sepa-
rate classifier for each feature, evaluate what it is good at and what mistakes
it makes, and then produce a final classification by considering the results of
all the individual ones.

This is exactly the idea behind ensemble methods in machine learning and
pattern recognition, which combine a number of different models, trained for
the same task, in such a way that the performance of the ensemble surpasses
the performance of the best of its members. In this article we add another
requirement to the ensemble, namely to outperform the classifier that uses
the concatenation of the features, thus to bring the best properties of the
two approaches together for robotic object recognition.

During our evaluations we found that it is quite difficult to surpass the
results obtained by concatenating all the features, but that it is possible
with the right training strategy and ensemble method. More specifically,
we explored a novel technique for creating uncorrelated ensemble members
that is substantially different from previously used methods. The technique
consists of training strong learners on subsets of a set of features extracted
from different sensor modalities and to combine them using either simple
heuristics or stacking. This is in sharp contrast to many other ensemble
methods which combine weak learners on a indivisible set of features by
perturbing, for example, the data distribution by re-sampling or re-weighting.

We also gave special consideration to ensemble methods that do not need
to be trained together. While this approach produces slightly inferior results,
its modularity makes it especially advantageous for large systems integrating
multiple sensors, where (with the improvements in hardware and addition of
new sensors) novel features are being developed that need to be integrated.

Furthermore, in the area of autonomous robotics, the ability to direct
gaze only with certain sensors or changing environmental conditions can have
the effect that some of the sensing modalities can not be used for observing
an object (e.g. low light conditions for cameras, or objects with specular,
transparent or reflective surfaces for 3D sensors), thus online modularity is
an additional plus.

While we focused our considerations on object recognition for robotics or
distributed systems, the presented findings and the used framework can be
applied in multiple fields, with the following main contributions:

• comparing different features and classifiers and testing their scalability
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for multi-modal object recognition;

• evaluation of a multitude of approaches for creating classification en-
sembles based on strong learners, and a method for improving on the
concatenation of features;

In the next section we review related approaches for multi-modal percep-
tion. Next, Section 3 briefly describes the ensemble methods used and the
experimental results are presented in Section 4. We discuss our findings in
Section 5 and conclude in Section 6 giving our insight for future work.

2. Related Work

In the following subsections we present related work and show the rele-
vance of our experiments for robotic object recognition.

2.1. Multi-Modal Perception

Most of the perception systems rely either on color/black&white camera
or 3D information, although image processing techniques can be applied on
different image sources as well (e.g. thermal cameras). The SIFT (Lowe,
2004) descriptor, which is one of the best-known keypoint descriptors and
detectors, makes use of detected keypoints in scenes and compares them with
referenced objects in order to identify the objects currently being observed.
In the 3D domain, the VFH (Rusu et al., 2010) descriptor was recently
developed as the latest, viewpoint dependent, extension of of PFH (Rusu
et al., 2008). The feature’s discriminative power is increased by the inclusion
of the viewpoint, which, however, also represents a deficiency in that the
feature becomes orientation variant.

There are approaches which combine geometry and color descriptors into
a single feature, however, properly balancing these two different properties
is difficult, as discussed in (Kanezaki et al., 2011).

Inspired by earlier work based on developmental psychology (Griffith
et al., 2009), object categorization using multiple modalities is explored by
Sinapov and Stoytchev (2011). While the authors base their approach on
psychological findings that suggest that a single sensory modality is often
not enough, they leave out the most descriptive modality, vision, and focus
on proprioceptive and auditory feedback (Lynott and Connell, 2009).

Lai et al. (2011b) validate the use of different visual modalities, using
spin images for describing shape and SIFT and texton histogram features to
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capture the visual appearance. They showed that color-based cues are more
important for instance recognition, while geometric ones are better suited for
categorization, and that their combination improves on both. This finding is
also supported by Sun et al. (2010).

2.2. Ensemble Learning

While single classifiers, or sequential applications of them are what was
typically used for object recognition so far, a combination of different clas-
sifiers and features using ensemble learning seems like a promising approach
as it has been successfully applied to challenging machine learning problems
in other domains.

Lam and Suen (1995) investigated how to optimally combine classifiers
for character recognition and found that simple voting is often the most
robust choice. They found, that the combination methods which are trainable
exhibited better performance than voting on the partition of the dataset on
which they were trained, but performed worse on a second partition of the
dataset.

An approach which has been particularly successful in the Netflix contest
(Sill et al., 2009) is stacking, introduced by Wolpert (1992). In stacking the
outputs of so called level-0 classifiers and also meta-data is combined to form
the input for classifiers on level-1 which are trained to improve generalization
accuracy on a validation set.

Madry et al. (2011) evaluated several linear and non-linear methods for
combining classifiers trained on shape and appearance features. They used
SIFT (on grayscale and the opponent color channels) and histograms of ori-
ented gradients (HOG) for 2D appearance and 2D shape, together with the
Fast PFH version for 3D shape. As base classifiers they used (multi-class)
support vector machines (SVM) with χ2 kernel. The ensemble methods eval-
uated were the max confidence rule, the product rule using confidences and
the confidence weighted voting rule. They also tested stacking using SVM
with the RBF kernel, the histogram intersection kernel and the χ2 kernel
trained on the confidences of the base classifiers. On a dataset of 11 object
categories (10 objects each, 16 views per object), they found that the voting
rule outperforms the other rules as well as the SVM.

In our experiments we tested a large number of scans falling into 51
categories, and evaluated a large number of base classifiers, simple rules,
voting and stacking methods. Apart from considering only the base classifier
confidences, we also used a separate partitioning of the data to evaluate their
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performance, and used the obtained accuracies as weight factors as well. This
accuracy weighted voting was found to be the best ensemble method among
the simple combination rules, but in our large scale experiments it didn’t
outperform the stacking approach.

3. Ensemble Methods for Multi-modal Object Recognition

In this section we will present the ensemble methods we implemented
and evaluated to find an alternative to concatenating features. As Figure 1
summarizes, the key idea is to create separate classifiers for different features
and to combine their output for the final classification.

Sensor 1 Sensor 2

Feature 
extraction 2

Feature 
extraction 3

42 3

Classifier

Classifier 1 Classifier 2 Classifier 3 Classifier 4

Ensemble

Feature 
extraction 4

1

Feature 
extraction 1

Sensor 1 Sensor 2

Feature 
extraction 2

Feature 
extraction 3

Feature 
extraction 4

Feature 
extraction 1

42 31

Figure 1: Technique of concatenation (left) compared to ensembles (right).

Fumera and Roli (2005) analyzed linear combinations of classifiers and
found that the performance depends on the correlation of the outputs of the
ensemble members. This is intuitively clear, since if two classifiers often make
the same prediction little additional information is gained by observing the
output of both. This is obviously also true for all other ensemble methods.

A lot of the best performing ensemble methods have some scheme for
re-weighting or re-sampling the dataset for training the ensemble members
to achieve this lack of correlation. One example is bagging, which stands for
bootstrap aggregation, in which a random subset of the dataset is used for
training each member. Another method is the popular AdaBoost in which
the classifiers are trained in sequence and the training data is re-weighted for
training a new classifier in the sequence. When using neural networks the
random initialization of the weights leads to different local minima and it is
then possible to combine these networks to committees.
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In the next subsections we present the various ensemble methods we used
grouped into four categories, starting with the simpler “max rules” and fin-
ishing with stacking.

We implemented the various feature extraction modules and classifiers
in C++, using the communication interface of the Robot Operating System
(ros.org), where standard service requests were defined that deal generally
with a large number of classifiers. Wrapping other existing libraries is on
our agenda, but up to now we focused on integrating LIBSVM (Chang and
Lin, 2011), FLANN (Muja and Lowe, 2009), and one-against-all boosting
approaches based on decision trees from OpenCV (Bradski, 2000). We will
make the code and examples available on the project homepage at:
http://code.in.tum.de/indefero/index.php/p/ias-cf/.

The accuracy of the classifiers are estimated from a validation partition
of the dataset. In some of the rules it is quite likely to get a tie between two
decisions. The ties are broken by making a random decision. To keep things
simple this is not stated explicitly for each rule for which it applies.

3.1. Max and Product Rules

The max accuracy rule is to choose the classifier whose classification de-
cision has the highest class-conditional classification accuracy. Similar to
this, the max confidence rule is to choose the classifier which has the highest
confidence in it’s decision. The combined max confidence and accuracy rule
is to choose the classifier whose classification decision has the highest class
conditional classification accuracy multiplied by the classifiers confidence.
These are simple ways of combining classifiers that do not require a common
training and consider the result of only one selected classifier. Another well
known method we explore that does not need optimization of parameters but
does merge all the available information is the product rule.

3.2. Weighted Voting

The weighted votes method assigns an additional weight to every classi-
fier. We experimented with various voting approaches that do not require
combined training and are thus modular. In accuracy weighted voting each
classifiers vote counts with with the accuracy of the classifier. Confidence
weighted voting is equivalent to simple voting with the addition of having
a vote count with the classifiers confidence. Confidence and accuracy rated
voting is equivalent to simple voting with the addition of having a vote count
with the classifiers confidence multiplied with it’s class conditional accuracy.
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3.3. Error Correlation

For regression problems it is possible to find a closed form solution for
the weights of a linearly combined ensemble of classifiers if the expected sum
of squares loss is to be minimized. Bishop (2006) analyzes this approach and
a closed form solution is given and shows that for all convex loss functions
this method’s expected performance is higher than simple averaging and can
not produce an increase in the expected error. He discusses the topic in the
context of regression but it is also possible to use this approach for classifier
ensembles. The derivation goes through unchanged for the classification case.

3.4. Stacking

Stacking or stacked generalization as it was originally called by Wolpert
(1992) is an ensemble method in which classifiers are stacked to achieve
improved classification performance. Stacking classifiers is done by collecting
the outputs of so called level-0 classifiers into a new dataset and to train one
or more level-1 classifiers on the outputs of the level- 0 classifiers. When doing
this it is of importance to build the dataset on which the level-1 classifiers
will be trained from training data that wasn’t used to to train the level-0
classifiers, since what we are interested in is to improve the performance on
the test set, not on the training set, in short to improve generalization.

This is usually done by separating the dataset into n folds, removing
one, training one of the classifiers on the remaining folds and evaluating the
classifier on the fold which was left out. This is repeated for all the folds.
Together with the labels this process creates the level-1 training dataset,
which has the same size as the level-0 training set. Formally, the level-0
training set D0 is split up into m = |E| equally sized folds P1, .., Pm. By P−i
we denote D\Pi. Each ei ∈ E is trained on P−i and evaluated on Pi to yield
a part of D1, the level-1 training set. Then the level-1 classifier is trained
on D1. The accuracy of the stack is evaluated on a separate test dataset.
Stacking is illustrated schematically in Figure 2.

The procedure described above is the classical formulation. We take a
slightly different approach which is motivated by the abundance of data we
have, the multi-modal nature of our features and the goal to easily try feature
combinations without having to retrain a classifier on the combined feature
vector every time. Let D1, ..., DN be N different datasets obtained from N
different feature extraction processes. The datasets are split up into three
parts each (D0

i to D2
i ), the level-0 training sets, level-0 evaluation sets and

level-1 evaluation sets. The classifiers ei ∈ E with |E| = N are trained on D0
i
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Figure 2: Original stacking compared to our stacking version.

and evaluated on D1
i to produce D′i the level-1 training-set parts which are

combined to form D′ the full level-1 training-set on which a level-1 classifier
is then trained. The whole stack is then evaluated on the D2

i datasets.
So far we only spoke of the “outputs” of the classifiers without defining

them more precisely. Ting and Witten (1997) evaluated stacking on four
different classifiers and their combinations and found that for stacking to
work the level-0 classifiers have to output a confidence rating for each label.
Since our AdaBoost multi-class version outputs confidence ratings we were
able to use it as a level-0 classifier. The SVM implementation we use is also
capable of training a probability model, unfortunately the training process
is very time consuming and so we were not able to try SVMs as level-0
classifiers.

4. Experimental Results

The following subsections present the results we got during the evaluation
of the presented method. The results will be discussed in the next section.
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4.1. Dataset preparation and feature extraction

The full dataset presented in Lai et al. (2011a) contains roughly 250,000
scans of the 300 objects organized in 51 categories1. This is a lot of data
and handling datasets of this size poses a challenge in itself. Therefore, like
the original authors as well, we decided on using only every 5th sample in
the dataset. This still leaves us with about 1 day of extraction time for the
whole dataset, but it assures that enough views of the objects are considered
in order to make a proper evaluation.

After extracting the VFH, GRSD-, SURF and OpponentSURF features,
the Bag of Words (BoW) model is used to create a global descriptor for
the objects when using OpenCV features. Then the datasets were split up
further by removing every second instance to obtain the training partitions
of the dataset. Of the removed instances every second was used to form
a validation set for the level-0 classifiers and the remaining instances were
used to form a validation set for the level-1 classifiers. Table 1 contains the
number of instances for each partition of the datasets.

We use PCL (Rusu and Cousins, 2011) to extract the VFH and GRSD-
features. The point clouds in the dataset are very dense so to speed up normal
estimation the point clouds were down-sampled using a voxel grid filter with
0.001 meters grid size. The local neighborhood for estimating the normals
is determined using a 0.02 meter radius search. In our experiments we use
the OpenCV 2.2 implementation of SURF. We detect features using the
dynamic SURF detector, an extension which lowers the detection threshold
until a sufficient number of points have been found. We also scaled each
dimension of the VFH and GRSD- features to the range [0, 1] by subtracting
the minimum value along a dimension and dividing by the maximum along
that dimension (determined after subtracting the minimum). The SURF
BoW feature vectors were linearly scaled so make the bins of the histogram
sum to one.

As a next step the datasets were concatenated to yield six datasets con-
taining the concatenations of each group of two features, four datasets con-
taining the combinations of each group of three features, and one combina-
tion containing concatenations of all four features. We call the single features
(VFH, GRSD-, SURF and OpponentSURF) “singles”, the concatenations of
two features “doubles”, of three features “triples”, and of all features “all”

1http://www.cs.washington.edu/rgbd-dataset/
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Table 1: Number of instances in the datasets containing 20 classes (left) and all of the 51
classes (right).

Number of classes 20
Training instances 3600
# eval level-0 1800
# eval level-1 1800
Total scans 7200

Number of classes 51
Training instances 20738
# eval level-0 10369
# eval level-1 10369
Total scans 41476

in the following.
In the next subsections we present the comparisons of results obtained

by the different classifiers and ensembles, and consider the simple features
as well as their combinations. As we will discuss in Section 5, outperforming
the classifier trained on the concatenation of all the features requires the use
of pairwise combinations even with the most complicated ensemble method.
Nonetheless, this solution leaves us with a relatively good modularity, as
the cost of adding a new feature to the list of level-0 classifiers is linear in
the number existing ones (training the pairwise combinations), and only the
level-1 classifier has to be re-trained.

4.2. Evaluation of Features and Classifiers

Throughout the paper we will present performance using the error rate,
i.e. the fraction of object scans to which a false label was assigned. As shown
in Figure 3 AdaBoost is not very good with the concatenations and/or is very
bad with the BoW model. Regarding the SVM classifier, the linear kernel is
as good as the RBF kernel for high dimensional features. This implies that
AdaBoost is inferior to SVM. For the 51 class problem the accuracy is roughly
halved for both methods, but SVM scales marginally better. On the other
hand, as it can be seen from the classification times, the AdaBoost classifier
can be trained in less time and the time for classification with AdaBoost
is independent of the feature length. These findings were to be expected
given the generally known behaviors of the used classifiers. Therefore, for
some tests, using SVM with RBF kernel was attempted, but was found to
be prohibitively time-consuming and was left out.

4.3. Simple Ensemble Methods

We tested the simple ensemble methods described in Section 3 using sev-
eral feature-classifier combinations, as shown in Figures 4 and 5. The pro-
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(a) Error rate for the 20 classes problem

(b) Error rate for the 51 classes problem

(c) Feature vector length vs. training and classification time (for 20 classes)

Figure 3: Results using AdaBoost compared to those using SVM.

vided error rate for the concatenation and the best member being the error
rates achieved with the respective classifier. Due to time constraints we did
not train a probability model for the SVM and consequently all the ensemble
methods involving confidences were left out.

4.4. Stacking Compared to Simple Ensembles

In this experiment we evaluate performance of our variation of stacking
as described in subsection 3.4. We used Real AdaBoost as level-0 classifiers
and Real AdaBoost, LogitBoost and Gentle Boost as well as a linear SVM
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Figure 4: Error rate of all simple methods on the 20 classes problem with (from top to
bottom) AdaBoost, linear SVM and SVM with RBF kernel as base classifier

and a SVM with Radial Basis Function kernel as level-1 classifiers. As for
the simple ensemble methods we combine level-0 classifiers trained on the
singles, doubles and triples for the 20 classes problem. For the 51 classes
problem we combined the singles and doubles only due to excessively long
run times. The results are shown in Figure 6, with the provided “concat.”
error rate as the best error rate achieved using the concatenation approach.

5. Discussion

To establish a baseline to which we can compare the performance of the
ensemble methods we evaluated a small number of classifiers (linear-SVM,
RBF-SVM and AdaBoost) on a number of features, which capture differ-
ent aspects of the objects, and their concatenations. From the experiments
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Figure 5: Error rate of all simple methods on the 51 classes problem with AdaBoost (top)
and linear SVM (bottom) as base classifier

Figure 6: Stacking with AdaBoost as level-0 classifier and various level-1 classifiers, for 20
classes (top) and 51 classes (bottom).

we conclude that VFH is the most descriptive feature, among the features
considered, for the task at hand. Not surprisingly, the accuracy of all the
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classifiers and the time required for training increases with the number of fea-
tures used. Furthermore, the direct comparison of the classifiers shows, that
the SVMs can utilize the information contained in the diverse features bet-
ter than AdaBoost and also that the linear-SVM approaches the RBF-SVMs
accuracy for concatenations of features of increasing length – as suggested
also in (Chang and Lin, 2011). Regarding the training time, we see an ap-
proximately linear increase with feature vector length for all classifiers.

In every ensemble method the goal is to produce a number of uncorre-
lated classifiers and the experiments described in the previous section provide
ample evidence to suggest that our feature recombination method leads to
uncorrelated classifiers. Most noteworthy is the significant increase in ac-
curacy obtained over the single feature ensembles by the ensemble whose
members were trained on two element subsets of the feature set. In virtually
all cases for the 20 classes problem this setup was able to improve even on
the classifiers trained on the concatenation of all the features, and for the
51 classes problem at least the stacking approaches were able to achieve this
goal. However, adding further classifiers trained on larger subsets of the fea-
ture set to the ensemble did not lead to much improvement in most cases
and to decreased accuracy in some cases. As shown in Figure 7 the results of
the concatenated features were almost reached already by stacking the single
original features.

Figure 7: Confusion matrices for the AdaBoost ensemble (left) as compared to the clas-
sifiers of the concatenation of all features with a linear SVM classifier (right) for the 20
classes problem. Best viewed in color.

One important advantage of the simple rule ensembles over monolythic
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classifiers and stacking is their modularity which, as we could show, comes
at the cost of decreased accuracy. The hybrid model of the simple rule
ensembles trained on two element subsets, however, is an approach balancing
the conflicting goals of accuracy and modularity while incurring only an
insignificant increase in the time needed for training. It therefore presents an
attractive addition to the machine learning toolchest for applications which
can take advantage of multiple data sources. In particular, accuracy and
confidence based voting approaches seem to be the method of choice as they
deliver the highest accuracy among the simple rules.

6. Conclusions and Future Works

All in all, we can say that multi-modal and multi-featured object clas-
sification has a clear advantage over single-featured one. In contrast to our
earlier work where a sequential approach was used (Marton et al., 2011),
first considering geometric, then texture based features, here all modalities
are considered together. Ensemble methods are a viable way of combining
the various sources of information, and they allow for a higher modularity
and efficiency than simple concatenations of features. As we saw, with the
right approach, we can improve not only over the best ensemble member,
but also the concatenation.

There is growing evidence that human vision combines top-down (concept
driven) and bottom-up (data driven) approaches (Frisby and Stone, 2010),
thus extending classification systems with context information is a natural
way of increasing performance. Similarly, geometric verification can help to
reject at least some of the false positives, as discussed in (Mozos et al., 2011).
Additionally, in (Marton et al., 2011) we reported on the improvement in
accuracy of over 10% when geometric categorization is allowed to work with
“internal” categories. This suggests that an unsupervised classification level
followed by a mapping to human-defined labels, similarly as in (Mozos et al.,
2011), would enable the classifiers to tune themselves to the specific feature
space used.

Therefore we see the integration of all these different system into a single
one as the next important step towards the realization of a general and robust
object object detection and recognition system that is capable to reliably deal
with a large number of objects and environmental conditions.
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