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Abstract— Mobile manipulation robots are becoming more
and more common and begin to extend their task spectrum
towards more general housework activities. The sequence of
actions needed to accomplish such tasks can be obtained from
instructions on the Internet originally written for humans.
While giving valuable information about the types of actions
and some of their parameters, these instructions usually lack
information that humans consider to be obvious. In this
paper, we investigate how we can equip robots with sufficient
knowledge and inference mechanisms to competently detect
and fill such knowledge gaps in descriptions of everyday
activities. We present methods for projecting the effects of
actions and processes, for inferring action parameters like the
objects and locations to be used, and introduce representations
for reasoning about object transformations resulting from the
effects of actions.

I. INTRODUCTION

Generating plans for autonomous robots is commonly

done using AI task planning methods [1], for example

STRIPS [2] or Hierarchical Task Networks (HTN, [3]).

These planning systems are equipped with a library of action

models and can be tasked with planning problems specified

by an initial state description and a goal. The planning system

then computes a (partially) ordered set of action instances

that provably transform any state satisfying the initial state

description into a state satisfying the goal.

In everyday manipulation, however, the problem is not so

much the determination of which actions to perform in which

order, but rather how to perform these actions. The sequence

of actions to perform to solve a task, as well as a set of action

parameters, can be obtained from instructions created for

humans, for example from web sites like wikihow.com [4].

Using these step-by-step instructions is promising and at-

tractive because, in addition to the sequence of actions,

they also include other valuable information like timing,

objects, locations, hints and caveats. Yet, they typically lack

information pieces that are necessary for successful action

execution. As an example, a typical instruction for making

pancakes looks as follows:

1) Mix flour and milk

2) Crack an egg

3) Mix the egg yolk with the dough

4) Pour the dough onto a pancake maker

5) Flip the pancake

Turning such instructions into robot plans requires the

robot to automatically detect and fill various knowledge gaps.

For example, the instructions do not contain the information

that eggs need to be fetched from the refrigerator before they

can be cracked and added to the cookie dough. They do not

tell the robot that, in order to fetch milk, it should look for a

bottle or box containing milk, instead of the milk itself. The

fact that the pancake is the result of the dough being baked

is not described in the instructions, the instruction to switch

on the pancake maker is missing completely. Fixing these

plan flaws requires knowledge not only about the robot’s

actions, but also about processes they trigger, like the dough

transforming into a cake or a device heating up.

In this paper, we describe and discuss the types of knowl-

edge that are needed to automatically complete such instruc-

tions, as well as the representation and inference mechanisms

needed to make this knowledge applicable. More specifically,

the technical contributions of this paper are the following:

1) a novel system that integrates several sources of knowl-

edge and combines them with inference procedures to

detect and fill knowledge gaps in incomplete instruc-

tions for everyday manipulation tasks,

2) techniques for combining action planning with pro-

cesses such as ’baking’,

3) a representation called “object transformation graph”

that semantically describes how objects are transformed

during a task and allows to reason about these transfor-

mations.

We validate these contributions by demonstrating how to

complete underspecified descriptions of meal preparation

tasks. The system automatically adds actions for fetching

objects, detects plan flaws like that the pancake maker

is not switched on, and eliminates them by adding the

necessary actions. In the remainder of this paper, we first

give an overview of the system structure, then introduce the

representation of actions in the knowledge base, describe the

representation of action effects, and explain how processes

are modeled. The following section then explains the process

of completing underspecified instructions. We report on an

experiment in which the system autonomously completed

underspecified instructions, and finish with our conclusions.
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Fig. 1. Part of the ontology of action classes.

II. OVERVIEW

The methods described in this paper translate incomplete

instructions into effective task specifications, i.e. specifica-

tions that contain sufficient information to let robots execute

the task. The instructions serving as input are represented

using formal logics and can for example be generated by

translating natural language descriptions from Web pages like

ehow.com using the methods described in [4]. They are read

into the KNOWROB knowledge base [5] and are combined

with information from other sources. Like other knowledge

in KNOWROB the instructions are represented using the Web

Ontology Language OWL-DL [6]

An important feature provided by KNOWROB is to com-

pute semantic relations on demand using the so-called “com-

putables”. They enable the system to to evaluate a semantic

relation by executing a computational procedure that is

attached to it, and are for example used for example to

evaluate the transformedInto relation based on the object

transformation graph (Section IV-C) and the projection of

future world states. Such inferences cannot be performed by

a common description logics reasoner such as Racer [7],

Pellet [8], or HermiT [9]. We instead use the SWI Prolog

Semantic Web Library [10] to load OWL files into the

knowledge base and can then use custom Prolog rules for

inference, in addition to common DL inference tasks (e.g.

classification and sub-class computation). The open-source

implementation of the methods described in this work is

available in the knowrob actions package in KNOWROB.1

With this work, we build upon prior work on robot

knowledge bases, semantic environment models [11], robot

capability models [12] and the extraction of knowledge about

actions and objects from web sources [13]. An interface to

the robot’s perception system [14] feeds object perceptions

into the knowledge base to represent the current world state.

The system is part of the Cognitive Robot Abstract Machine

1http://ros.org/wiki/knowrob

(CRAM) framework [15] that provides building blocks for

cognition-enabled autonomous robots. The generated task

specifications can be translated into plans in the CRAM Plan

Language (CPL) to be executed on the robot. Currently, we

are working on the integration of this action representation

with the Ubiquitous Networked Robots Platform (UNR-

PF) [16] that provides a uniform interface for executing a

variety of tasks on different robot platforms.

Some of the methods described in this paper are inspired

by classical work in AI: The action representation, for

example, shares common features with the STRIPS plan

language [2] (namely the declarative description of the pre-

and postconditions) and with Hierarchical Task Networks [3]

(namely the hierarchical composition of action descriptions).

However, the problem we tackle is a different one: Instead

of generating sequences of actions from first principles, we

already start with an (incomplete) action description in which

knowledge gaps need to be detected and filled appropriately.

Moreover, we complement the representation of actions with

processes, represented similar to Forbus’ Qualitative Process

Theory [17]. Also beyond the AI planning community, there

is much literature on different aspects of representing and

reasoning about actions. Baral, for instance, investigated

logic-based action languages for multi-agent scenarios [18],

Kress-Gazit temporal logic specifications of robot actions

for task- and motion planning [19] and for generating robot

controllers [20].

Related work tackling the challenge of understanding

natural-language instructions and grounding them in formal

logical representations and sometimes even robot actions has

often been performed by learning combinatorical categorical

grammars (e.g. [21],[22]). Branavan [23] presented an ex-

tension of these methods for learning the relation between

natural language text and actions even if there is no 1:1

mapping, e.g. if actions are only described at a coarse level,

which is related to the problem of incomplete instructions

we are tackling in this paper.



In comparison, our system follows a more holistic ap-

proach than related techniques that cover parts of the bigger

problem: Robots need to consider both actions and processes,

need to reason about their effects on objects, and inte-

grate information from external sources like the environment

model. This requires a formal representation and inference

procedures that integrate and combine all these different

aspects.

III. ACTION REPRESENTATION

In this paper, we distinguish natural-language instruc-

tions, (incomplete) task descriptions in formal logic that

can be generated from these instructions and that are the

input to the methods presented in this paper, effective

task specifications, which provide enough information to be

executable, and finally robot plans, which are concurrent

reactive behavior specifications that can automatically be

generated from an effective task specification.

The logic-based action representation used for the infer-

ence steps in this article is based on Description Logic and

the Web Ontology Language (OWL). Actions in a task are

described using class restrictions in OWL that specify the

abstract structure of an action, including references to the

objects that are to be manipulated and the locations that shall

be used. These class restrictions are derived from the exten-

sive ontology of robot actions provided by the KNOWROB

ontology. It contains a taxonomy of more than 130 actions

commonly observed in everyday activities. Figure 1 shows

a small excerpt; we omitted many classes due to space

limitations2.

Descriptions of single actions can be combined to describe

hierarchical robot plans composed of several actions, inter-

acting with different objects, and specifying further action

properties. In the following section, we will explain in

more detail how the relation between actions and objects

is modeled.

IV. EFFECTS OF ACTIONS ON OBJECTS

Reasoning about actions needs to take their interactions

with objects into account. For pick-and-place tasks, these

interactions are mostly limited to changes in the positions of

objects, while the notion of “an object” as something that

keeps on existing over the course of the task still remains.

More complex activities like preparing meals interact with

objects in a much more fundamental way: Objects are

created, destroyed, and can substantially change their types,

appearance, and aggregate states. For example, vegetables

are cut into pieces (which appear as new objects while the

original objects disappear), substances are mixed to cookie

dough, which is transformed from some liquid stuff to a rigid

object by a baking process.

We introduce the “object transformation graph” (Figure 2)

as a structure to jointly model the performed actions and their

2The complete ontology, including the classes for actions and processes,
can be accessed at http://ias.cs.tum.edu/kb/knowrob.owl. Whenever possible,
the KNOWROB ontology, and thus also the branch containing the action
classes, is kept compatible to the OpenCyc ontology (http://opencyc.org,
[24])

respective effects on objects. It supports planning, projection,

and a-posteriori reasoning about how objects have changed

during a task. Planning requires declarative specifications of

the in- and outputs of an action such that the robot can find

actions which have the desired effect. Projection requires

methods for computing the world state after execution of

an action, i.e. procedural knowledge that allows to mentally

execute the action. A-posteriori reasoning requires formal

descriptions of the relations between actions and objects. We

will describe these aspects in the following sections.

A. Declarative descriptions of action effects

The properties in Figure 3 are used to describe in detail

which objects an action consumes as inputs (sub-properties

of preActors), and which ones are generated as its results

(sub-properties as postActors). The preActors are supposed

to hold before the action takes place. They include the

agent (doneBy), the initial locations and states (fromLocation,

fromState), and the different roles an object can play in

an action. An object can be removed from something, like

the dirt in a cleaning action (objectRemoved), and can

undergo state changes like freezing or melting (in which it is

the objectOfStateChange). Perceptual actions can detect an

object (detectedObject), and actions can substantially change

objects by transforming them into another one (transforme-

dObject), destroying them (inputsDestroyed) or integrating

them into another one (inputsCommitted).

transformedObject

inputs

fromLocation

outputsRemaining

inputsCommitted

objectOfStateChange

inputsDestroyed

preActors

detectedObjectobjectRemoved

doneByobjectActedOn fromState

targetPosture

postActors

outputs toLocation

outputsRemaining outputsCreated

toState

Fig. 3. Part of the hierarchy of action-related properties. The upper part
lists specializations of preActors, which describe the inputs of an action
and the situation at its beginning. The postActors describe the outputs and
post-conditions.

The postActors describe the outcome of an action: Outputs

that are created, for example a dough that results from mixing

flour and water (outputsCreated), or inputs that have been

modified, but remained the same kind of object, like a bread

from which a slice is cut off (outputsRemaining). Body

movements lead to a targetPosture, transport actions move

something to a toLocation, and state changes attain a target

state (toState).

By defining class restrictions using these properties, one

can describe the inputs, outputs, pre- and postconditions of

an action in terms of a declarative specification that can

be used to search for an action with the desired properties.

For example, the robot can search for an action that turns a



Fig. 2. Object changes in a simple baking task: An egg is cracked, egg shells and egg yolk appear as single objects, and are mixed to a dough together
with some milk and flour. The arrows denote the properties linking actions and objects, which describe how an object is affected by an action.

PhysicalDevice from DeviceStateOff to DeviceStateOn and

receive the action TurningOnPoweredDevice that is defined

as follows:

Class : TurningOnPoweredDevice
SubClassOf :

C o n t r o l l i n g A P h y s i c a l D e v i c e
o b j e c t O f S t a t e C h a n g e some P h y s i c a l D e v i c e
f r o m S t a t e v a l u e D e v i c e S t a t e O f f
t o S t a t e v a l u e Dev i ceS t a t eOn [ . . . ]

B. Temporal projection of action effects

To predict the outcome of an action and the resulting world

state, the robot can use effect axioms, which are procedural

implementations that create the links between the action

instance and the involved objects like its inputs, outputs,

newly created or destroyed objects.

Below is an example of a projection rule for the action

“cracking an egg”. In the first lines, the predicate checks

its applicability conditions: The action type needs to fit, the

objectActedOn has to be specified, and the outputs should not

have been computed already. Then it creates the new object

instances for the outputs using the owl instance from class

predicate. Afterwards, the predicate asserts the relations

between the input objects, the action, and the generated

outputs. By this projection process, the generic objectActe-

dOn relation is described in more detail using more specific

properties like inputsDestroyed or outputsCreated, which can

then be used to determine if an object still exists or when it

has been created.

% C r a c k i n g an egg
a c t i o n e f f e c t s ( ? A c t i o n ) : -

o w l i n d i v i d u a l o f ( ? Act ion , ’ C r a c k i n g ’ ) ,
\+ o w l h a s ( ? Act ion , o u t p u t s C r e a t e d , ) ,

o w l h a s ( ? Act ion , ob jec tAc tedOn , ? Obj ) ,
o w l i n d i v i d u a l o f ( ? Obj , ’ Egg - Ch ickens ’ ) , ! ,

% new o b j e c t s
o w l i n s t a n c e f r o m c l a s s ( ’ E g gS h e l l ’ , ? S h e l l ) ,
o w l i n s t a n c e f r o m c l a s s ( ’ EggYolk - Food ’ , ? Yolk ) ,

% new r e l a t i o n s
o w l a s s e r t ( ? Act ion , i n p u t s D e s t r o y e d , ? Obj ) ,
o w l a s s e r t ( ? Act ion , o u t p u t s C r e a t e d , ? S h e l l ) ,
o w l a s s e r t ( ? Act ion , o u t p u t s C r e a t e d , ? Yolk ) .

In the current implementation, the projection rules are real-

ized as Prolog rules that describe the effects of an action on a

rather coarse, symbolic level. While these simple descriptions

obviously do not cover all effects of an action and only

superficially describe the effects of actions, they are still of

much value to a robot for predicting if objects appear, get

destroyed, or change their types. They also provide a hook

to include other, more advanced prediction mechanisms like

physical simulation [25], [26].

Due to space limitations, we cannot describe the temporal

aspect of projection in much detail (see [13] for more infor-

mation). In KNOWROB, actions and processes (like events

in general) are described by their start- and end times, from

which qualitative relations such as ’during’ or ’after’ can be

generated. Duration specifications (e.g. how long something

needs to bake) can be specified for the resp. classes and can

be taken into account during projection.

C. Reasoning about object transformations

By applying the projection methods, the robot builds

up the object transformation graph (Figure 2). We define

the transformedInto predicate as a transitive relation that

covers all modifications of objects, including destruction,

creation, and transformation. It can be evaluated based on

the object transformation graph and be used to track which

changes have been made to an object over the course of

the task. Figuratively speaking, this relation “steps over the

actions” and directly links the inputs and outputs. Due to

its transitivity, it can cover whole chains of transformation

applied to an object. It allows, for instance, to retrieve all

ingredients of a product, or to explain into which other

objects an input object has been converted.

V. PROCESS REPRESENTATION

While the effect axioms introduced in the previous section

cover the direct effects of actions, there can also be indirect

effects, for example as the result of processes that have been

started by the action. An action to take an ice cube out the

freezer does not only move the ice, but also start a melting

process. Such kinds of changes that happen in the world

which are not directly and intentionally caused by an action

are described as processes.

With our notion of processes we largely follow the Qual-

itative Process Theory (QPT) by Forbus [17], the standard

work for qualitative reasoning about processes. The classical

QPT only considers processes that happen more or less

automatically because their preconditions become true for

some reason. Its focus is on physical processes like steam

production in a boiler. In a robotics context, the interaction

between actions and processes becomes important since



robots can actively change the state of the world by their

actions, which can start processes, either intentionally or

rather as a side-effect. Therefore, we extended the QPT

representation by adding declarative descriptions of the re-

quirements and outputs of processes, and by including the

process effect axioms into the action projection procedure.

The former can be used to including processes when planning

actions, e.g. to perform an action with the intention of

starting a process, the latter to take their effects into account

when predicting the outcome of actions.

A. Process ontology

The different kinds of processes are described in an ontol-

ogy similar to the one for actions. Subclasses of IntrinsicStat-

eChangeEvents, for instance, describe processes that mainly

change the state of an object, e.g. if a device is switched on

or off (ChangingDeviceState) or if a container is opened or

closed (OpeningSomething/ClosingSomething). This branch

further comprises changes in temperature (HeatingProcess/-

CoolingProcess) and resulting changes in the aggregate state.

Subclasses of PhysicalEvent describe processes that result

in the creation, destruction, or a different arrangement of

objects. Because of limited space the process ontology is

not included in the paper, but can be found online as part of

the KNOWROB ontology.

B. Process definition

We adopt the definition of processes from the QPT which

describes a process by a combination of

“(1) the individuals it applies to; (2) a set of preconditions

[...]; (3) a set of quantity conditions [...]; (4) a set of

relations the process imposes beween the parameters of the

individuals, along with any new entities that are created; (5)

a set of influences imposed by the process on the parameters

of the individuals.” (see [17], p.105)

The preconditions (2) are external circumstances that need

to be fulfilled for the process to become active, while the

quantity conditions (3) are relations between the properties

of the involved individuals that are part of the process theory.

In a baking process, for example, the thermal connection

between some dough and a heat source is an external

precondition, while the relation of the temperatures (the

temperature of the heat source needs to be above the baking

temperature of the dough) is described as quantity condition.

Similar to the representation of actions, we also have a

hybrid representation of the effects of processes: The inputs

and outputs of a process can be described declaratively using

the properties listed in Section IV-A. This allows to plan

actions in order to start a process which then achieves the

desired effect. Projection can be used to predict the outcome

of a process for a concrete set of entities. The projection

rules for processes are very similar to those for actions, but

further check if the quantity conditions are fulfilled for the

process to become active. The computation of process effects

is realized as part of the action projection procedure: Having

computed the direct effects of an action, the method calls the

generic process projection predicate to check whether any

processes became active.

Like in the QPT, we represent qualitative relations be-

tween values (like larger than or smaller than) instead of

discretizing continuous values into concepts like Cold or Hot,

which are not well-defined and hard to compare. To facilitate

reasoning about temperatures, we defined some approximate

temperature values that showed to be sufficient for most

tasks in kitchen activities: On the one hand, we specify

the workingTemperatures of the most important heating and

cooling devices, like the refrigerator (+5°C), the freezer (-

18°C), the oven (+180°C), and the pancake maker (+150°C).

On the other hand, the system knows the minTempForProcess

and maxTempForProcess for some relevant processes: Water-

like substances freeze at about 0°C, boil at about +100°C,

and most dough starts to bake at around +120°C. The default

temperature, which is used if no temperature is specified for

an object, is set to 20°C.

VI. DETECTING AND FILLING KNOWLEDGE GAPS

By combining the descriptions of actions and processes,

one can identify knowledge gaps in underspecified instruc-

tions and fill them appropriately, e.g. by adding supple-

mentary actions that are needed to correctly perform a

task. Since the requirements of processes and the inputs of

actions are described using the same properties, the same

queries can be used for reading their in- and outputs and

for checking whether a resource is available. The predi-

cate class properties reads knowledge described at the class

level using OWL restrictions. Missing inputs are defined

as those that are needed but not inferred to be available

(resource available) at a (projected) point in time.

a c t p r o c i n p u t s ( ? ActProc , ? I n p u t ) : -
c l a s s p r o p e r t i e s ( ? ActProc , p r e A c t o r s , ? I n p u t ) .

a c t p r o c o u t p u t s ( ? ActProc , ? Outpu t ) : -
c l a s s p r o p e r t i e s ( ? ActProc , p o s t A c t o r s , ? Outpu t ) .

a c t p r o c m i s s i n g i n p u t s ( ? ActProc , ? Miss ing ) : -
f i n d a l l ( ? Pre , ( a c t p r o c i n p u t s ( ? ActProc , ? Pre ) ,

\+ r e s o u r c e a v a i l a b l e ( ? Pre ) ) , ? Mis s ing ) .

These basic query predicates can be combined to

check whether missing inputs of an action can be gen-

erated by adding (a sequence of) other actions. The re-

quired subactions predicate succeeds if the action is already

feasible (no missing inputs), or if a sequence of actions can

be planned to create the missing inputs, starting from the

currently available set of objects. This sequence is generated

by recursively calling the resource provided by actionseq

predicate that searches for actions or processes which can

provide a missing input. If a suitable action or process is

found, the algorithm continues with checking if all of its

prerequisites are available. If a missing input is provided by

a process, the algorithm usually needs to add actions to start

this process by making its preconditions true.

r e q u i r e d s u b a c t i o n s ( ? ActProc , [ ] ) : -
a c t i o n m i s s i n g i n p u t s ( ? ActProc , [ ] ) , ! .

r e q u i r e d s u b a c t i o n s ( ? ActProc , ? SubActs ) : -
a c t i o n m i s s i n g i n p u t s ( ? ActProc , ?Ms ) ,
s e t o f ( ? Sub , ( ( member ( ?M, ?Ms ) ,

r e s o u r c e p r o v i d e d b y a c t s ( ?M, ? Sub ) )
; f a i l ) ,



? Subs ) ,
f l a t t e n ( ? Subs , ? SubActs ) .

r e s o u r c e p r o v i d e d b y a c t s ( ? Res , [ ? SubActs | ? SubAct ] ) : -
a c t i o n o u t p u t s ( ? SubAct , ? Res ) ,
r e q u i r e d s u b a c t i o n s ( ? SubAct , ? SubActs ) .

The previous algorithm generated the inputs for a single

action based on the current world state. To extend the ap-

proach to the completion of whole sequences of actions, one

needs to combine it with the projection methods described

earlier. These projection methods allow to predict the world

state after the first actions have been performed to correctly

evaluate if all inputs for later actions will be available at that

point in time. The following algorithm thus iterates between

predicting the world state at some point in the sequence,

computing missing inputs for the subsequent action based on

this predicted world state, and generating actions to create

these missing inputs.

c o m p l e t e a c t s e q ( [ ] , [ ] ) .
c o m p l e t e a c t s e q ( [ ?A| ? ActSeq ] , ? R e s u l t A c t S e q ) : -

r e q u i r e d s u b a c t i o n s ( ?A, ? AddAct ions ) ,
p r o j e c t a c t i o n c l a s s ( ?A, , ) , ! ,
c o m p l e t e a c t s e q ( ? ActSeq , ? Res tAc tSeq ) ,
append ( [ ? AddActions , [ ?A] , ? Res tAc tSeq ] , ? R e s u l t A c t S e q ) .

VII. GENERATION OF ROBOT PLANS

After an effective task specification has been generated,

it can be converted into the CPL plan language [15] for

execution. Both representations have their specific fields

of application: On the one hand, the action representation

described in this article is optimized for logical reasoning

and the representation of different kinds of information about

actions, objects, the environment, and physical processes

in a common format. The CPL language, on the other

hand, is optimized for plan execution and allows expressive

behavior specification including parallel execution, monitor-

ing, exception and failure handling. Both languages define

actions in a similar way: Objects, for example, are defined

as “designators” in CPL, which describe the properties a

suitable filler needs to have. This is conceptually very close

to the specification based on restrictions that is used in the

logical action representation. Therefore, the translation into

CPL is largely straightforward. An example of a CPL plan

for making pancakes and details on how this plan is executed

can be found in [27].

As an alternative execution environment, we are cur-

rently integrating the representation with the Ubiquitous Net-

worked Robots Platform (UNR-PF) [16] to allow hardware-

independent action execution on different robot platforms.

VIII. EXPERIMENTS

We validate our approach by applying the methods pre-

sented in the previous sections to complete an underspecified

instruction for making pancakes. The following listing shows

the original action sequence (left to right, top to bottom) in

a form that can be obtained by translating natural-language

web instructions [4]. The links between actions and objects

are only described on a rather generic level using e.g. the

objectActedOn property.

Class : MixFlourAndMilk Class : CrackAnEgg
SubClassOf : SubClassOf :

MixingSomething Crack ingSometh ing
ob jec tAc t edOn some Milk ob j ec t Ac t edOn some Egg
ob jec tAc t edOn some F l o u r

Class : MixEggAndDough Class : PourDough
SubClassOf : SubClassOf :

MixingSomething ob j ec t Ac t edOn some Dough
ob jec tAc t edOn some Dough t o L o c a t i o n some PancakeMaker
ob j ec tAc t edOn some EggYolk

Class : F l i p P a n c a k e
SubClassOf :

Tu rn ingSometh ing
ob j ec tAc t edOn some Pancake

This description serves as the input for the completion

process visualized in Figure 4, in which the different colors

correspond to different kinds of information and mechanisms

how they can be acquired. As part of the completion proce-

dure, the following inferences are performed:

a) Actions for fetching objects: The instructions as-

sume that all objects are already prepared in front of the

robot. This is usually not the case, so actions for fetching the

input objects from their storage locations are added. Manip-

ulation actions like MixingSomething or CrackingSomething

have the requirement that the manipulated objects are in

reach of the robot and on top of some table or counter

top. If this is not already the case, the planning procedure

automatically adds fetching actions:

Class : MixingSomething
SubClassOf :

I n c o r p o r a t i o n - P h y s i c a l
ob j ec tAc t edOn some ( S p a t i a l T h i n g and

( inReachOf v a l u e MYSELF) and
( on some ( Tab le o r CounterTop ) ) )

ob j ec tAc t edOn some MixingBowl

Class : F e t c h i n g S o m e t h i n g
SubClassOf :

Pu t t ingSometh ingSomewhere
ob j ec tAc t edOn some S p a t i a l T h i n g
t o L o c a t i o n some ( P l a c e and

( inReachOf v a l u e MYSELF) and
( on some ( Tab le o r CounterTop ) ) )

To efficiently fetch these objects, the robot needs to infer

where to search for them, combining knowledge from its

environment model with knowledge about object properties

(see [28] for details).

The following query is an example how to obtain the

opening trajectory of the container that is inferred to be the

most likely storage location for milk. Its result is shown in

the left part of Figure 4.

? - s t o r a g e P l a c e F o r ( ? S t P l a c e , ’ CowsMilk - P r o d u c t ’ ) ,
o w l h a s ( ? S t P l a c e , o p e n i n g T r a j e c t o r y , ? T r a j ) ,
f i n d a l l ( ? P , ( o w l h a s ( ? Tra j , p o i n t O n T r a j , ?P ) ) , ? T r a j ) .

b) Translating between stuff and containers: In contrast

to objects, stuff can be split into pieces that are still of the

same type. Especially stuff-like things like milk or sugar

are usually stored in bottles or boxes. For these things,

the fetching action automatically looks for a container that

contains this kind of stuff, like a bottle of milk, instead of

trying to transport the stuff itself.

c) Combined planning with actions and processes:

Using the projection methods, the effects of actions and

processes can be computed in order to check whether all

required inputs are available. In the experiment, the system

found that the pancake, which is the objectActedOn of the

flipping action, is not available at that point in time and thus



Fig. 4. Visualization of the different kinds of knowledge used to complete the instructions for making pancakes.

needs to be created. In contrast, the ingredients that needed

to be fetched were known to exist, but just not in reach of the

robot. Using the planning methods described in Section VI,

the system infers that the pancake can be generated from

the pancake dough by a BakingFood process. To start the

baking process, the robot needs to plan actions to make its

preconditions true, namely that the dough must be in thermal

contact with a HeatSource. Thermal contact is given if one

object is inside or on top of another one, as it is the case for

the the dough and the pancake maker. In order to turn this

HeatingDevice into a HeatSource, it needs to be switched on,

starting a HeatingProcess. The system thus adds an action

to turn on the pancake maker to the sequence.

The following query performs this completion procedure:

It first reads all sub-actions of the original action plan and

then calls the complete act seq predicate which recursively

adds actions to ensure that all inputs of the actions are

available at the time when they are executed. In addition

to the fetching actions, an action of type TurningOnHeat-

ingDevice is added to the sequence that triggers the process

BakingFood. The upper part shows the object transformations

inferred using the projection methods, the lower part the

original action sequence and the generated effective task

specification that can be transformed into a robot plan. Note

that the initial projection does not contain the transformation

of the dough into a pancake, which is detected as a plan flaw

and fixed by adding actions to the sequence.

? - p l a n s u b e v e n t s ( ’ MakingPancakes ’ , ? Or igActSeq ) ,
c o m p l e t e a c t s e q ( ? OrigActSeq , ? DebuggedSeq ) .

% Outpu t o f t h e p r o j e c t i o n p r o c e d u r e :
egg1 -> EggShe l l1
egg1 -> EggYolk2
mi lk1 added t o -> Dough4
f l o u r 1 added t o -> Dough4
Dough4 added t o -> Dough6
EggYolk - Food2 added t o -> Dough6
Dough4 on t o p o f pancakemaker1

Or igActSeq =[ ’ CrackAnEgg ’ , ’ MixFlourAndMilk ’ ,
’ MixEggAndDough ’ , ’ PourDough ’ ,
’ F l i p P a n c a k e ’ ] ,

DebuggedSeq =[ ’ FetchEgg ’ , ’ Fe t chMi lk ’ ,
’ F e t c h F l o u r ’ , ’ CrackAnEgg ’ ,
’ MixFlourAndMilk ’ , ’ MixEggAndDough ’ ,
’ PourDough ’ , ’ TurnOnHeat ingDevice ’ ,
’ BakingFood ’ , ’ F l i p P a n c a k e ’ ] .

d) Reasoning on the object transformation graph: Once

the object transformation graph has been built up, the robot

can perform reasoning on this structure. For example, it can

use its new knowledge about when objects are created or

destroyed to perform situation-specific computation of spatial

relations. In order to determine if a spatial relation holds

at a specific point in time, the computation needs to take

the creation and destruction of objects into account. In the

example, the egg is initially computed to be on the table,

but gets destroyed during the task, so it cannot be assumed

to be on the table afterwards. The properties describing how

objects are affected by actions are used here to determine

what happens to the objects, i.e. if objects are destroyed,

created, or transformed.

# I n i t i a l l y , t h e egg i s computed t o be on t h e t a b l e
? - o w l t r i p l e ( ’ on - P h y s i c a l ’ , ?A, t a b l e 1 ) .
A = ’ egg1 ’ .

# P r o j e c t i o n i n f e r s t h a t t h e egg g o t d e s t r o y e d
? - o w l t r i p l e ( ’ on - P h y s i c a l ’ , ?A, t a b l e 1 ) .
f a l s e .

Using the transitive property transformedInto, which is com-

puted based on the object transformation graph, one can

perform reasoning about which objects are transformed into

which other ones and determine for example where the

ingredients of a product have been taken from.

? - o w l t r i p l e ( t r a n s f o r m e d I n t o , ?A, ’ Baked4 ’ ) .
A = ’ Dough2 ’ ;
A = ’ EggYolk1 ’ ;
A = ’ egg1 ’ [ . . . ]

IX. CONCLUSIONS

In this paper, we have described methods for detecting and

filling knowledge gaps in instructions for everyday manip-

ulation tasks. Starting from an incomplete task description,

which can be generated from natural-language instructions,

the system can infer which information is missing and

where it can be obtained from. We presented methods

for projecting the outcome of actions and processes, for

including processes into the action planning procedure, and

for reasoning about the transformations of objects caused

by these actions. Especially cooking actions substantially

change the involved objects, including the creation of new

objects or the transformation into objects of a different kind,



and thus need this kind of representation. We illustrate our

approach by showing how an underspecified task description

can be completed using the presented methods, and where

the required information can be obtained from. The result is

an effective task specification that is as complete as possible

given the robot’s knowledge.

Some control decisions are intentionally postponed to

execution time, for example where exactly an object shall be

put down. These action parameters strongly depend on the

situation at hand, for example the configuration of obstacles

around an object, and cannot be determined a priori. A

parallel research project investigates how these kinds of

decisions can be taken using physical reasoning [29].

Compared to classical planning methods, we envision

a more knowledge-intensive approach to generating task

specifications. Having knowledge about how an action is

to be performed often facilitates the planning problem,

as Anderson pointed out [30], since irrational actions or

parameters can be ruled out. This makes the computational

complexity actually lower than that of a common, generic

planning technique with a similarly large domain. Another

aspect is that, due to the hierarchical nature of our task

specifications, the action sequences at each level are usually

rather short and concise.
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