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The face of computers and computer-equipped technical
systems has drastically changed over the last decade and
will continue to do so for some time. Illustrative examples
of these developments are mobile phones. Nowadays, mobile
phones are – for entertainment and other reasons – equipped
with continuous sensors for self localization as well as with
general purpose sensors such as cameras and microphones.
They are also seamlessly connected to the world-wide web,
the world’s largest information source. Phones also have
substantial computational resources causing the borderline
between mobile phones and computers to fade. Indeed, some
of the computer and mobile phone manufacturers are now
competing in the same market. A number of mobile phone
applications make good use of computational resources, the
web and the sensors in order to turn phones into smart
assistants such as travel guides.

Entertainment electronics, in particular in the games sec-
tor, is strengthening this development. It has developed
powerful graphical processing units and new sensors, such
as novel low-cost depth sensors, that enable computer games
to observe the movements of human players to control their
avatars in game environments. In other words, technical sys-
tems are being equipped with the perceptual and information
processing means for real world problem-solving.

The vision of generally useful technical systems implies its
own big challenges. Today, it is still not technically feasible
for an autonomous robot to pick and place chess pieces
with the dexterity of a five-year old, while Deep Blue [1],
a computer program for playing chess, successfully beats
the world champion. While this might be surprising upon
first glance, it has taught us researchers what the difficult
computational and control problems really are. We now know
that, in many application domains, the problem is less in
solving the problem itself but rather in solving the problem
flexibly, reliably and competently in a wide range of contexts,
in real time, and under uncertainty. The human brain is a
computational device that is tailored for flexible, reliable and
efficient real-time motion control [2], [3].

The complexity of the motion and action control problems
solved by humans and animals can be estimated by looking at
how long it has taken nature and evolution to arrive at their
highly specialized and optimized solutions. Anybody who
has tried to develop autonomous robot control for a rather
simple manipulation task, such as setting a table or cleaning
up, deeply admires the solutions nature has come up with. It
also suggests that understanding the information processing
principles will help us in the development of flexible, robust

and competent robots and other technical systems.
The methods that are used for realizing cognition-enabled

control are, in particular, automated learning, reasoning and
planning – methods that are key subject matters in Artificial
Intelligence. So what is the difference between Artificial
Intelligence and cognitive technical systems? Again, it is
difficult to draw an exact line, but one can certainly see
a strong difference in terms of emphases. While AI fo-
cuses on representations and algorithms, research in the area
of cognitive technical systems is typically more system-
oriented. Perhaps this difference is best illustrated by two
research questions that are investigated in the respective
fields. When applying AI methods to cognitive technical
systems, AI researchers face the so-called symbol-grounding
problem [4], the question of how symbolic representations
are formed from the sensor data of the technical system
and how symbolic action representations are translated into
physical actions, i.e. voltages to motors.

In contrast, cognitive systems research often investigates
the co-development of data structures and (computational
and control) processes with symbolic representations being
a subset of the suitable data structures. The latter view is
particularly evident in the research directions of embodied in-
telligence [5] and developmental robotics [6], [7]. A success
story of the AI-based research path is certainly probabilistic
robotics [8], where symbolic representations can be learned,
perhaps even as joint probability distributions, over sensed
data and used to control robots such that they are reliable
and can maximize the expected utility of their actions.
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