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Abstract— In order to allow safe operation and good perfor-
mance, robots need an accurate model of their environment.
Such a world model is constructed from sensor detections and
typically contains information about positions and velocities of
surrounding objects. This paper proposes how prior knowledge
about those objects can be used to improve the performance of
a world model, which is implemented by a Multiple Hypoth-
esis Filter (MHF). More specifically, knowledge about object
dynamics, expected locations, relations between object classes
and detector characteristics is incorporated in the probabilistic
models of the MHF. The results of simulations confirmed the
potential of incorporating such object knowledge in a world
model.

I. INTRODUCTION

In order to allow safe operation and good performance,
robots need an accurate model of their environment. This
view on the world will be called world model and in this
paper it contains both the positions and velocities of a set
of semantically labeled objects. Typically, the world model’s
goal is to enable safe navigation and successful manipulation
of objects. Furthermore, it can take load off perception by
providing expected object locations.

An important prerequisite for such a world model is
a real-time applicable multiple sensor multiple target data
association approach that can operate in unstructured and
dynamically changing environments. The data association
determines whether an observed feature corresponds to a
particular object in the world model. Target tracking allows
filtering out measurement noise, estimating velocities and
propagating object positions, even if they are out of sight,
e.g., temporarily occluded.

Various algorithms aim at solving the data association
problem. The joint probabilistic data association filter [1],
the Multiple Hypothesis Filter (MHF) [2] and the probability
hypothesis density filter [3] are most widely used as a basis.
For a more complete overview see [4]. All the state of the
art extensions use target tracking. Based on previous work
[5], the MHF is selected as being the preferred solution for
the data association problem.

The basic idea underlying a MHF is to keep track of
all possible solutions to the data association problem. Each
solution is represented by one hypothesis and the total set
of solutions forms a hypothesis tree. At each time step, the
state of the world according to the most probable hypothesis
is used as a world model. However, the size of the tree grows
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more than exponentially with the number of measurements
rendering the algorithm computationally intractable. In order
to allow real-time operation, each time step, a subset of
possible solutions is pruned based on the probability that the
hypothesis is the correct one. As a result, there is no longer a
guarantee that the most probable solution is available at any
time step, since an ancestor of the most probable hypothesis
may have been pruned at an earlier time step. This means
that the quality of the world model is highly dependent on the
probabilistic models underlying the calculation of hypothesis
probabilities. Object specific knowledge, such as ’tables are
static objects’ or ’people enter through a door’, can be of
great help by calculating the probability of a hypothesis.
Furthermore, it seems a missed opportunity to not use prior
knowledge about the world.

Various knowledge based approaches exist that solve the
data association problem based on object knowledge. There,
the problem of data association is also referred to as object
identity resolution [6]. Knowledge bases are used to allow
reasoning, e.g., visual models of objects available in on-
line databases such as [7] – [12], or knowledge bases
representing common sense knowledge or relations between
objects, e.g., [13] – [15]. According to [6], object identity
resolution ’has not received substantial attention’ and due
to their ’fairly low’ update rates, tracking as used in the
MHF is not a helpful option. However, experiences, e.g.,
in the RoboCup middle size league where robots move
up to 5 [m/s] [5], have clearly shown the need for object
tracking, especially in dynamical environments. Furthermore,
tracking enables predicting object positions, even if they are
temporarily occluded and it provides regions of interest to
perception, which makes object detection cheaper, thereby
allowing for higher update rates. A more related approach is
the perceptual anchoring in [16], however, their experiments
focus on reasoning with static objects.

The aim of this paper is to incorporate object knowledge
and use it to improve the performance of the MHF by
designing better probabilistic models. A side contribution
is the introduction of a strategy that removes objects from
a hypothesis tree. The latter is needed, since a side-effect
of the pruning is that once all hypotheses contain the same
object, it will stay in the world model forever, even when
this object has left the robot’s environment. Summarized,
the contributions of this paper are:
• Incorporation of object specific knowledge in the prob-

abilistic models underlying the MHF. This way, object
knowledge improves the performance under the con-
straint of a real-time applicability.

• Extension of the MHF with a mechanism that compen-



sates for leaving objects based on object models.
The paper is organized as follows. Section II introduces

mathematical symbols and definitions and Section III ex-
plains the multiple target tracking approach that is used
for solving the data association problem. Then, Section IV
focuses on incorporating object knowledge in this framework
and zooms in on the implementation. Section V presents
simulation results, whereas Section VI gives conclusions and
recommendations for future work.

II. MATHEMATICAL SYMBOLS AND
DEFINITIONS

This section introduces the notation and definitions as used
throughout this paper.

Each possible solution to the data association problem is
represented by a hypothesis. A hypothesis is written as hik,
where the superscript i is the index of the hypothesis at
discrete time step k. Each hypothesis exclusively contains
a list of objects, where an object is represented by o. Each
object has a semantic class label C(o), such as ’Cup’ or
’Person’, and a unique identifier which allows distinction
between objects of the same class. The class labels are
hierarchical ordered in a taxonomy, which represents is-
a relations between the classes. In addition, each object o
has a Kalman filter, used for tracking the object. The filter
has a state xk, which at least contains a 3D position in
case of static objects, and both a 3D position and a 3D
velocity in case of non-static objects. The filter is updated
based on measurements zk, which represents the class label
and position of an observed object. The class label of
measurement zk is denoted by C(zk).

III. TRACKING AND DATA ASSOCIATION

This section briefly explains the algorithm used for object
tracking and data association. The algorithm takes measure-
ments from a perception module as input and creates a world
model out of it.

A. Expanding the Tree

Each time a measurement arrives, the tree is expanded. All
possible solutions are considered, hence for each hypothesis
the new measurement could be:

1) Clutter (a false detection)
2) An object that was already present in the parent

hypothesis
3) A newly appeared object

If a measurement is associated with a new object, the object
receives its own filter with the observed position and zero
velocity as initial state. In [5], stationary Kalman filters
were used but these filters can equally well be selected
differently based on, e.g., the dynamic properties of objects
that are involved. Each hypothesis is unique, i.e., the number
of objects or the state of at least one of the objects will
be different, and does not explicitly contain the association
history.

B. Propagating Objects

Once the tree is expanded, all objects in all hypotheses
are propagated. This means, that based on the system model
and xk−1, a prediction xk of the real object state is made.

If the measurement is associated with an object, the object
state propagation is followed by a state update based on this
measurement.

C. Updating Probabilities

The posterior probabilities of the hypotheses are updated
using Bayes law:

p(hik|z1:k) =
p(zk|hik)p(hik|hi

′

k−1)p(hi
′

k−1|z1:k−1)

p(zk|z1:k−1)
, (1)

where hi
′

k−1 represents the parent hypothesis of hik and
p(hik|z1:k): is the posterior probability of the i’th hypoth-

esis given all measurements up to and including timestep
k.
p(zk|hik): is the likelihood of measurement zk given

hypothesis hik.
In case of associating zk with clutter, i.e., zk is a false

detection, p(zk|hik) typically is a uniform distribution over
the observation space.

In case of associating zk with an existing object, the
mismatch between the updated 3D object position according
to the filter and the 3D object position according to the
measurement is defined by the vector δ. The vector δ is
transformed into a probability using a scaled multivariate
normal distribution:

p(zk|hik) = e−
1
2 δ
>Σ−1δ, (2)

where Σ is the covariance matrix and typically represents
the measurement noise.

In case of associating zk with a new object p(zk|hik) = 1,
since then the filter is initialized at the measured position
and, as a result, δ is the zero vector.
p(hik|hi

′

k−1): represents the conditional probability of the
measurement being (i) a newly appeared object, (ii) an object
that was already present in the hypothesis, or (iii) clutter,
given its parent hi

′

k−1.
p(hi

′

k−1|z1:k−1): represents the posterior probability of the
parent hypothesis.
p(zk|z1:k−1): is the marginal probability that acts as a

normalizing factor.
The pruning of hypotheses and the selection of the final

hypothesis will completely be based on the probabilities
calculated by (1), as will be shown in the next sections.
For that reason, the likelihood p(zk|hik) and the probabilistic
models underlying p(hik|hi

′

k−1) are crucial for the quality of
world model compared to the ground truth.

D. Pruning of Hypotheses

In order to allow real-time implementation of the MHF,
the size of the tree must be limited, which requires pruning
of hypotheses. At each time step, two criteria are evaluated
and all hypotheses that do not meet these criteria are removed



from the tree. The assumption underlying this pruning is that
once the probability of a hypothesis (i) drops below a certain
threshold or (ii) is no longer among the set of nhyp,max
highest probabilities, it will never evolve to the hypothesis
that best represents the state of the world in the future. More
specifically, hypotheses are pruned if:

1) The probability p(hik|z1:k) of the hypothesis drops
below a certain threshold:

α ·max
i
p(hik|zk), 0 ≤ α < 1, (3)

where α describes the ratio between the maximum and
minimum allowed hypothesis probability.

2) The total number of hypotheses exceeds a predefined
number nhyp,max and hik is not among the nhyp,max
most probable hypotheses.

E. Removing Leaving Objects From Hypotheses

As a result of the hypotheses pruning, an object can be
present in all nhyp,max most probable hypotheses in the tree.
In this case the object will stay in the world model forever,
even when it leaves the robot’s environment and does no
longer produce features. In literature, this problem is solved
by removing objects from a hypothesis if the time since the
last filter update exceeds a predefined threshold [5], [17],
[18].

Some object removal strategy obviously is required, but if
objects go out of sight, due to occlusion or movements of the
robot, it usually is better to remember them. Furthermore,
not detecting an object could also be the result of the
perception module giving priority to detecting other objects,
e.g., detecting static objects like tables might only happen at
very low rates. Here it is proposed to prune objects based
on the uncertainty of the object state. More specifically,
objects are removed from all hypotheses if the uncertainty,
here represented by their covariance, exceeds a predefined
threshold Pmax.

F. Publishing the Result

Finally, at each time instance k the current state of the
world according to the most probable a posteriori hypothesis
hMAP
k is given as an output of the algorithm.

IV. OBJECT KNOWLEDGE

Section III has clearly shown the importance of the prob-
abilistic models, since these determine the most probable
hypothesis. Furthermore, the pruning strategy is completely
based on the probabilities p(hik|z1:k) that are calculated
using these models. Although it seems beneficial to use
prior object knowledge within the probabilistic models, this
field of research is largely unexplored. For that reason,
this section proposes how knowledge about objects can be
used to improve tracking and data association. Section IV-A
aims at explaining which object knowledge can be used and
how. Then Section IV-B focuses on the implementation used
during the simulations presented later.

<object>
<class>table</class>
<filter>
<type>Kalman filter</type>
<motion_model>zeroth order</motion_model>
<system_noise>
<matrix> ... </matrix>

</system_noise>
<measurement_noise>
<matrix> ... </matrix>

</measurement_noise>
</filter>

</object>
<object>
<class>human</class>
<filter>
<type>multiple model Kalman filter</type>
<motion_model>zeroth order, first order<motion_model>
...

</filter>
<appearance_model>
<appearance_relation target="door"

max_distance=0.5 frequency=0.1 />
</appearance_model>
...

<\object>

Listing 1. Example XML snippet that can be used to store object specific
information

A. Adding knowledge to the MHF

1) Instantiation of a new object: As mentioned in Sec-
tion III, each time a new object is added to the tree, an object
filter is initialized at the observed position. The filter type
depends on the dynamic properties of the object, e.g., tables
get a Kalman filter with zeroth order motion model whereas
humans might need more advanced filters. If there is prior
knowledge available about the required filter settings, e.g.,
obtained from previous runs, it can be added to object models
and can then be used to initialize the filter. This knowledge
can be represented in any xml-based format, which can then
easily be connected to an existing object database as [12].
An example of an xml-based template is given in Listing 1.

2) p(hik|hi
′

k−1) - new objects and appearance models:
Updating the probability using (1) involves calculating
p(hik|hi

′

k−1). In case of associating the measurement with
a new object, p(hik|hi

′

k−1) represents the probability that
objects (i) enter the observation region or (ii) reappear
after being lost due to occlusion. Especially the first profits
from object specific knowledge represented by an appearance
model. Typically these appearance models contain common
sense knowledge such as ’people enter through the door’,
spatial relations such as ’computers can be found on a desk’
or context dependent information like ’it is not very probable
to find a sheep in an office environment’. Open Mind
Indoor Common Sense (OMICS) [14] already stores this
type of knowledge, e.g., ’coffee is made in a coffee maker
which is in a kitchen’ and for that reason, it seems a good
candidate for providing appearance models. Alternatively,
the object relations can be stored in networks [20], e.g.,
Bayesian networks where nodes represent objects and links
the conditional probabilities between the objects.

3) p(hik|hi
′

k−1) - existing objects: This defines the proba-
bility that a particular object is updated, i.e., how often does
a measurement correspond to this particular object, which



depends on the frequency at which the perception detects
that object. Section IV-B will give an example of how this
probability can be selected.

4) p(hik|hi
′

k−1) - clutter: Characteristics of the detection
algorithm or the measurement range of a sensor provide
valuable information. For example, if one tries to detect faces
using a camera, the percentage of false positives typically
depends on tunable parameters in the detection algorithm or
the distance between face and camera. Both the percentage
and the distance can be included in the probabilistic model
for p(hik|hi

′

k−1) in case of clutter. However, for sake of
simplicity the distance dependency is omitted for now and
will be part of future work.

5) p(zk|hik) - existing object: In case of associating the
measurement with an existing object, the likelihood can be
determined by the distance between measurement and object,
as defined by (2). The measurement noise can be used in a
rather straightforward manner using the covariance matrix Σ.
In addition, the difference between object and measurement
class label can be reflected in the likelihood. Comparing class
labels can be done using taxonomic knowledge. If, for exam-
ple, the taxonomy defines that ’BottleOfCoke’ is-a ’Bottle’,
associating a measurement with class label ’Bottle’ with a
world model object that has class label ’BottleOfCoke’ must
have a high likelihood compared to a world model object
that has class label ’Chair’. Taxonomies and ontologies can
be used for this purpose, e.g., KnowRob [15] can provide
such knowledge.

Furthermore, classes can have similar visual appearance,
e.g., a mug can contain a picture of a face. In this case,
associating a measurement with class label ’Face’ with a
previously detected ’Mug’ can be the best solution, despite
the confusing labels. Implementing this requires an advanced
ontology, including visual similarity as property between
classes, which depends on the detection algorithm used.
These ontologies are not the primary focus of this work and
for that reason, visual similarity will not yet play a role in
this likelihood.

6) Leaving objects: As mentioned in Section III-E, the
MHF needs a strategy to deal with leaving objects. Here, it
is proposed to use the state uncertainty for this purpose. The
state uncertainty increases with every propagation step and
typically decreases after an update. The mismatch between
observed motion and estimated motion determines the rate
at which this uncertainty increases and is dependent on
the object. Active objects can move randomly and hence
their movements are hard to predict and their uncertainty
increases rapidly, e.g., playing children, whereas passive or
static objects can be propagated with a smaller increase of
uncertainty, e.g., a table or someone watching television.
How the uncertainty is propagated depends on the filter,
which in turn depends on the object class.

B. IMPLEMENTATION
This section describes how the proposed approach pre-

sented in Section IV-A is implemented.
If a new object is added to a hypothesis, a Kalman filter

using zeroth and first order motion models is initialized.
In order to allow the combination of different filters, an
autonomous multiple model (MM) estimator is implemented.
More specifically, an autonomous MM estimator with hard
B-best approach decisions is used, where B = 1 [19].
The combination of a zeroth and first order motion model
allows start-stop motions. This autonomous MM filter is
used for tracking all moving objects. For objects that are
not expected to move, such as tables, Kalman filters with
a zeroth order motion model are used. Besides the motion
model, initial state covariance and the uncertainty threshold
used for dealing with leaving objects are chosen based on the
object class. The measurement model depends on the class
and detector, i.e., how accurate can the detector detect an
object of that class. In the current implementation, all prior
information is represented in a file, similar to Listing 1.

Probability updates of the hypotheses are implemented
using (1). The knowledge needed for the conditional update
probabilities p(hik|hi

′

k−1) is represented using the following
three functions:
• fclutter: The detection frequency of false positives

(clutter), implemented as a constant depending on the
detection algorithm and sensor used for detection.

• fexisting(C(o)): The detection frequency of objects
with class C(o), implemented using a look-up table
containing detection frequencies per object class.

• fnew(o, hik): The frequency of the appearance of object
o in context of hypothesis hik, e.g., how often are chairs
detected if the objects in hik are all office related. It is
implemented as:

fnew(o, hik) = max
o′∈h

fpresence(o, o
′), (4)

where fpresence(o, o
′) denotes the frequency of the

appearance of object o in the presence of o′. As an
example, (4) can be used to denote that objects of
class ’Person’ appear near a door every 10 seconds on
average.

These frequecies are designed using the suggestions in
Section IV-A, e.g., the frequency at which a face detection
module runs or the approximated percentage of false positive
based on tunable parameters. Using these functions, the
conditional update probabilities p(hik|hi

′

k−1) are calculated
as follows:

p([hik−1, clutter]|hi
′

k−1) =
fclutter
F

(5)

p([hik−1, oexis]|hi
′

k−1) =
fexisting(C(oexis))

F
(6)

p([hik, onew]|hi
′

k−1) =
fnew(onew, h

i′

k−1)

F
, (7)



where oexis is an existing object that is associated with mea-
surement zk, onew is a new object added to the hypothesis
based on zk, and the normalizing factor F is the sum of all
frequencies.

The likelihood of hypothesis hik is represented as an
extension of (2):

p(zk|hik) = Lclass(C(ok), C(zk)) · e− 1
2 δ

T Σ−1δ, (8)

where Lclass(C(ok), C(zk)) denotes the likelihood of object
ok being of class C(ok), while the measurement is of class
C(zk). If C(ok) denotes a super- or a subclass of C(zk),
LClass is set to one, otherwise it is set to zero. A simple
taxonomy was used to declare such is-a-relations between
object classes. The class likelihood function can also be used
to declare visual similarities between object classes, but this
is future work.

For new objects, (8) always evaluates to one, since the ob-
ject position and class are chosen based on the measurement
zk. In the case of clutter, the likelihood p(zk|hik) is chosen
to be one.

To sum up, object descriptions used in this paper contain:
• An object class label
• Frequencies of detection (fexisting), appearance related

to other object classes (fpresence) and false positives
(fclutter)

• Is-a-relations to other classes, i.e., the object is included
in a taxonomy or an ontology

• Filter type and initial conditions, such as initial state
covariance, dynamic model, and system noise

• Detector dependent measurement model including mea-
surement noise

V. SIMULATION RESULTS
A. Simulation 1

In the first simulation, the simple taxonomy shown in
Fig. 1 was implemented and the Cans and Cups are detected
more often. The taxonomy allowed associating detections
with class label ’Can’ with world model objects with class
label ’CokeCan’ or ’BeerCan’ and vice versa. As a result,
the view of the world was consistent and there did not exist
multiple instances of the same object with different class
labels. Furthermore, measurements with other class labels,
e.g., table or cup, were only associated with objects that had
the same class label, or with clutter. Detections with a wrong
class label, typically were associated with clutter.

The tracking filtered the noisy detections, which resulted
in a steady world model. No dynamics were involved, hence
the Kalman filters had zeroth order motion models.

Fig. 1. Taxonomy used during simulation 1.

Fig. 2. Simulated measurements (gray dots) including false positives,
and output of the MHF (black dots). Between section (A, B) and (C, D)
occlusion was simulated. (E) corresponds to an incorrect object instantiation,
which was propagated to and removed at (F).

B. Simulation 2

In this simulation, the task is to track a person. Fig. 2
shows the setting and the results of the second simulation.
In the upper left corner, a door was assumed. Based on
simple knowledge, i.e., ’people enter through a door’, the
frequency fnew of a new object appearing close to the door
is chosen to be higher than the frequency elsewhere. The
simulated person enters and leaves through the door. The
position measurements are noisy and false positives appear
randomly over the whole observation area, as indicated by
the gray circles in Fig. 2. The person walks anti-clockwise
and all measurements over the whole time interval are shown.
Both between points A and B and between C and D, a
1.5 [s] occlusion is assumed and for that reason, only false
detections are available in these time intervals. The black
dots show the trajectories of objects according to the world
model.

Up till point A, the world model generates the result that is
desired, i.e., a smooth trajectory through the noisy detections.
Once the person is occluded, the position is propagated using
the Kalman filter with first order motion model, resulting in
the black line. At point B the person re-appears, but due to
the nonlinear trajectory of the person during the occlusion the
propagation was slightly off. However, once the person re-
appears at point B, the tracking enables associating with the
propagated person and the mismatch between propagation
and measurement is eliminated.

From point B to C, everything again goes as expected.
Then the person is occluded again. Due to a coincidental
false detection on the left of point C, the estimated velocity
increases. As a result, the propagated position and the
measurements after re-appearance again are different. Still,
the tracker can catch up with the person at point D and keeps



track until the person leaves the room.
Note that there is one incorrect object trajectory between

E and F. Two false detections appear close to each other
and within a short time interval near point E. As a result,
the world model assumes a person, despite the relatively low
fnew in this region. After the update with the second false
positive, the person is not detected anymore and a propaga-
tion is performed. During this propagation the uncertainty on
the person’s position increases. At point F, the uncertainty
is above the threshold and the object is removed from the
world model.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper presented methods for adding object knowledge
to a world model, such that it performs better in unstructured,
dynamically changing environments under the constraint of
real-time applicability. The world model was implemented
using a Multiple Hypothesis Filter, which is a structure
that aims at solving the data association problem. The
probabilistic models underlying the MHF are crucial for the
quality of its output. It was shown how knowledge can be
used to improve those models:
• Use spatial relations between objects to determine the

probability of the appearance of new objects
• Choose the appropriate tracking filter depending on the

dynamic properties of the object
• Use detector-specific knowledge, such as frequency of

detection and number of false positives to determine the
reliability of a measurement

• Use taxonomic knowledge about object classes to en-
able a more flexible association between objects and
measurements

Furthermore, this paper proposed an uncertainty-based
strategy for the active removal of leaving objects. Uncertainty
propagation is based on the filter used for tracking. By
using multiple model filters and object class dependent filter
settings, the removal of leaving objects now depends on the
knowledge about the dynamic properties of the objects.

The results of simulations confirmed the potential of
incorporating object knowledge in a MHF.

B. Future work

First of all, the future work will be:
• Show the benefits of incorporating object knowledge

during real-life experiments
• Using more general knowledge, e.g., [13]–[14]

Besides this, extending the probabilistic models, using more
advanced multiple model tracking strategies [19] and using
visual similarity between objects to calculate the likelihood

of association with existing objects can further improve the
results. Finally, it is aimed to use RoboEarth [21] to share the
knowledge required and obtained by the algorithm described
in this paper.

VII. ACKNOWLEDGMENTS
The research leading to these results has received fund-

ing from the European Union Seventh Framework Program
FP7/2007-2013 under grant agreement no248942 RoboEarth.

REFERENCES

[1] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, ser.
Mathematics in Science and Engineering. Academic Press, 1988.

[2] D. Reid, ”An algorithm for tracking multiple targets”, IEEE Trans. on
Automatic Control, vol AC-24, no. 6, pp 843–854, December 1979.

[3] Ronald P.S. Mahler, ”Multitarget Bayes Filtering via First-Order
Multitarget Moments”, IEEE Trans. on Aerospace and Electronic
Systems, vol 39, no. 4, pp 1152–1178, 2003.

[4] T. De Laet, ”Rigorously Bayesian Multitarget Tracking and Localiza-
tion”, Ph.D. dissertattion, Katholieke Universiteit Leuven, 2010.

[5] J. Elfring, M.J.G. van de Molengraft, R.J.M. Janssen and M. Stein-
buch, ”Two Level World Modeling for Cooperating Robots Using a
Multiple Hypotheses Filter”, Int. Conf. on Robotics and Automation,
Shanghai, 2011.

[6] Nico Blodow, Dominik Jain, Zoltan-Csaba Marton and Michael Beetz,
”Perception and Probabilistic Anchoring for Dynamic World State
Logging”, Proc. of 2010 IEEE-RAS Int. Conf. on Humanoid Robots,
Nashville, TN, USA, 2010.

[7] http://i61p109.ira.uka.de/ObjectModelsWebUI/.
[8] http://vision.caltech.edu/Image_Datasets/Caltech256/.
[9] http://www.behold.cc/.

[10] http://marathon.csee.usf.edu/range/DataBase.html.
[11] http://sketchup.google.com/3dwarehouse/.
[12] http://www.ros.org/wiki/household%20objects.
[13] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira, ”An in-

troduction to the syntax and content of Cyc”, Proc. of the 2006
AAAI Spring Symposium on Formalizing and Compiling Background
Knowledge and Its Applications to Knowledge Representation and
Question Answering, Minneapolis, pages 44–49, 2006

[14] Rakesh Gupta and Mykel J. Kochenderfer, ”Common sense data
acquisition for indoor mobile robots”, Nineteenth National Conference
on Artificial Intelligence, pages 605–610, 2004

[15] Moritz Tenorth and Michael Beetz, ”KnowRob Knowledge Processing
for Autonomous Personal Robots”, IEEE/RSJ Int. Conf. on Intelligent
RObots and Systems, 2009

[16] Amy Loutfi, Silvia Coradeschi, Marios Daoutis, and Jonas Melchert,
”Using Knowledge Representation for Perceptual Anchoring in a
Robotic System”, Int. Journal on Artificial Intelligence Tools, 17(5),
pages 925–944, 2008

[17] Stefano Coraluppi, Craig Carthel, Peter Willett, Maxence Dingboe,
Owen O’Neill and Tod Luginbuhl, ”The Track Repulsion Effect in
Automatic Tracking”, 12th Int. Conf. on Information Fusion, Seattle,
WA, USA, July 2009.

[18] M. Betke, D.E. Hirsh, A.Bagchi, N.I. Hristov, N.C. Makris, and T.H.
Kunz, ”Tracking Large Variable Number of Objects in Clutter”, IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition,
Minneapolis, MN, June 2007

[19] X. Rong Li and Vesselin P. Jilkov, ”Survey of Maneuvering Tar-
get Tracking. Part V: Multiple-Model Methods”, IEEE Trans. on
Aerospace and Electronic Systems, vol 41, no 4, October 2005

[20] F.V. Jensen and T.D. Nielsen, ”Bayesian Networks and Decision
Graphs” Second edition, Springer, 2007

[21] O. Zweigle, M.J.G. van de Molengraft, R. d’Andrea and K.
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