
Significant Distinctions Only:

Context-dependent Automated Qualitative Modeling

Peter Struss1,2 and Martin Sachenbacher1,3

1Technical Univ. of Munich
Dept. of Computer Science

Orleansstr. 34
D-81667 Munich

Germany

2OCC’M Software GmbH
Gleissentalstr. 22

D-82041 Deisenhofen
Germany

3Robert Bosch GmbH
Department FV/SLN
P.O. Box 30 02 40
D-70442 Stuttgart

Germany
{struss, sachenba}@in.tum.de, struss@occm.de

http://www9.in.tum.de/MQM/

Abstract
Qualitative modeling means making the essential
distinctions only. Compositional modeling requires to state
behavior models of system constituents (e.g components)
independently of their context. This creates a problem,
because what is essential depends not only on the local
model fragment, but also on the context of the model and its
usage, i.e. the structure of the entire system and the task to
be performed. For instance, in diagnosis the goal of
discriminating between different behavior modes determines
the distinctions to be made. The paper deals with the
problem of deriving the sets of qualitative values of model
variables that allow to generate the distinctions required by
the goal of model based prediction and the structure of the
system. We present a formal definition and analysis of the
problem and an algorithm for computing appropriate
qualitative values based on propagation of distinctions. An
important special case is the computation of local
landmarks of variables. Based on the generic solution, we
show how models for diagnostic can be derived.

Introduction

The success of model-based systems and the growing
interest in their industrial application strongly relies on the
availability of models that are both compositional and
powerful enough to support solving different problems.
Compositionality, i.e. the possibility to combine models
taken from a library to form a system model, requires
genericity and addresses the efficiency of the model
formation process. Models with a granularity and
sufficient inferential power for a particular problem have to
be specific and address effectiveness and efficiency of the
problem solving process.
Obviously, there is a tension between these requirements.
Qualitative modeling, besides the feature of providing
facilities for conceptual modeling, can be seen as pursuing
the goal of making significant distinctions only in a model.
However, what is significant depends, on the context and
the task. Finding a solution to this dilemma is crucial,

because otherwise model libraries with re-usable models
are not feasible, and this will seriously reduce the practical
value of model-based systems.
The paper presents a contribution to analyzing and solving
the task of generating a model that reflects the distinctions
required by individual model fragments and the context and
purpose of the model. We first illustrate the problem by a
tiny, but practical example. Section 3 defines the goal
formally and precisely. Then we characterize the solution
in a theoretical way. In section 5, we present the
foundations and an outline of an algorithm that computes
the solution. Finally, we attempt to assess the impact of the
results achieved so far and point out open questions and
future work.

An Introductory Example

The following example is meant to illustrate the problem
and, in the following, the solutions presented. Although we
simplified it for this purpose, it is drawn from a real
application involving diagnosis and fault analysis of
vehicles.
The device in Figure 1 shows a pedal position sensor in a
passenger car. Its purpose is to deliver information about
the position of the accelerator pedal to the electronic
control unit (ECU) of the engine management system. This
happens in two ways: via the potentiometer as an analogue
signal, vpot, and via the idle switch as a binary one, vswitch.
The idle switch changes its state at a particular value of the
mechanically transferred pedal position (this is a
simplification, since the transition happens in some "fuzzy"
interval). This system is fairly simply structured
(nevertheless, the manufacturer’s failure mode and effects
analysis (FMEA) for this system covers 6 pages), and its
electrical subsystem comprises only standard components.
We do not expect any problems finding appropriate
behavior models for them in our model library.
Actually, there can be a problem, dependent on the type of
the model. If we have chosen to use qualitative models,

Appeared in: 13th International Workshop on Qualitative Reasoning (QR-99), Loch Awe, Scotland, 1999
Also in: 10th International Workshop on Principles of Diagnosis (DX99), Loch Awe, Scotland, 1999

which distinguish only between voltage "gnd", "between"
and "batt" as convenient for many tasks, the models of the
main components, potentiometer and switch may be the
ones shown in Table 1 (the depicted case iout=0 applies to
the correctly working system of Fig. 1) and Table 2,
respectively. They may suffice for some purposes.
However, they are of limited use when we want to use the
model for instance for diagnosis, FMEA, or to support the
development of control unit software. The reason is that
these tasks have to exploit the redundancy which
purposefully has been implemented in the system: the two
signals entering the ECU can be checked for plausibility.
The two possible values of vswitch, due to the switch state
and, hence, the pedal position, correspond to two ranges of
vpot separated by a particular voltage value. However, this
"landmark" is missing in the domain of voltage, and, hence,
the compositional model will be of very limited utility for
such tasks. How could the modeler of the potentiometer
anticipate this particular context? Actually, he could not,
and, moreover, he should not, because the voltage
landmark would not make any sense in a different
structure.

Of course, we could use numerical models in our library
which would be able to relate the switching position to a
particular division of the potentiometer voltage and vpot.
However, this model would be overly detailed for the
purpose discussed. What we would like to have, is a
composition of component models that make just the right
distinctions required by other components and the task the
model is used for. Since we cannot expect to find such
models in the library right away, the only way out is to
generate it from a base model which may be in a library. If
we cannot automate this goal-directed transformation of
models, much of the benefit of model-based systems,
namely re-use of model fragments, cannot be achieved, and
this will limit the utility of the technology drastically.
The example should trigger some intuitions of how this
might be achieved. Starting from a more detailed model,
the requirements for certain distinctions arising from some
components and/or the particular task can induce
significant distinctions in other components via the
structure of the device and the individual component

models. For instance, the required distinction between
"gnd" and "batt" for vswitch requires the distinction between
the switch states which in turn determines a distinctive
position of the pedal, and this induces a landmark in the
domain of vpot.
We would like to turn this intuition into an algorithm and,
in order to to create its foundations, analyze the task in a
rigorous and formal way.

Formalizing the Goal

The first step is to state our goal precisely and formally.
We will define it in a fairly general way. In particular, we
do not only treat models composed of continuous functions,
but relational models, as motivated by the switch example
in the previous section. Accordingly, a model of a system,
S, to be analyzed is given by a relation

RS ⊂ DOM(vS) ,

where vS is the vector of all parameters and variables
(input, output, internal and state variables) in the system.
In this formalism, our problem can be stated as follows:
there is
• a base domain DOM0(vi) for each variable vi, (e.g. real

numbers, intervals reflecting precision, but also states
or a qualitative domain) and a model

RS,0 ⊂ DOM0(vS)
= DOM0(v1) × DOM0(v2) × ... × DOM0(vn),

• a characterization of the primary distinctions for each vi

required for some external reason (a functional
specification, safety limits, diagnostic distinctions etc.)
or due to the structure of the local model, expressed in

Pospot iout vleft vright vpot ...
0 0 {gnd, betw,

batt}
{gnd, betw,
batt}

= vleft ...

posp,max 0 {gnd, betw,
batt}

{gnd, betw,
batt}

= vright ...

(0, posp,max) 0 gnd gnd gnd ...
(0, posp,max) 0 {gnd, betw} {betw, batt} betw ...
(0, posp,max) 0 batt {gnd, betw} betw ...
(0, posp,max) 0 batt batt batt ...
...

Table 1: Partial potentiometer behavior model from the
library

posswitch state vleft vright vswitch

[0, poss,med] left {gnd, betw,
batt}

{gnd, betw,
batt}

= vleft

(poss,med,
poss.max]

right {gnd, betw,
batt}

{gnd, betw,
batt}

= vright

Table 2: Switch behavior model from the library
(poss,med is the switching position)

Electronic Control Unit

Potentiometer

Mechanical
connection

Switch

Vpot
Vswitch

Batterygnd batt

Vleft Vright

iout

Vleft Vright

Figure 1: The Pedal Position Sensor

DOM0(vi) (e.g. the switch output voltage being zero or
positive). More precisely, for a variable v, such
distinctions are specified as partitions Π={Pk} of
DOM0(v) 1. A partition {Pk} ⊂ P(DOM0(v)) (the power
set of the domain) is a set of non-empty disjoint subsets
that together cover the entire domain:

∀ Pk : Pk ≠ ∅
Pk ∩ Pl ≠ ∅ ⇒ Pk = Pl and

∪ Pk= DOM0(v) .

The intuition behind the partitions is that they define
qualitative values: exactly values in different partitions Pk

have to be distinguished from each other. In our example,
the output voltage of the switch has the primary partition
Πvswitch={{0}, (0, ∞)}. For many parameters and internal
variables, there are no primary distinctions to be made. In
this case, the partition is the trivial one:

Π={DOM0(v)} .

In the following, it is often convenient to talk about the
mapping of values to qualitative values, which we call
qualitative domain abstraction.

Definition (Qualitative Domain Abstraction)
A qualitative domain abstraction is a mapping

τ: DOM0(v) → DOMα(v) ⊂ P(DOM0(v))
where ∀ v0 ∈ DOM0(v): v0∈τ(v0) .

Remark: A qualitative domain abstraction is a domain
abstraction in the sense of (Struss 92) and induces an
abstraction of the system model by

RS,τ:=τ(RS,0) .

There is an obvious correspondence between domain
abstractions and partitions: a qualitative domain abstraction
τ of DOM0(v) induces a partition

Πτ =τ(DOM0(v)) ,

and vice versa. By π, we denote the qualitative domain
abstraction induced by the primary partition:

π:=(π1, π2, ... πn) : DOM0(vS) → Π1 × Π2 × ... × Πn .

Variables that do not have any primary distinction
associated, are mapped to the trivial partition, i.e. there
exists only one „qualitative value“ which represents the
entire domain. Our view is that all we are ultimately
interested in when using the model is optimal information
about the primary distinctions, and that other distinctions
should be considered if and only if they are necessary to
derive conclusions about the primary ones. From the initial
fine-grained model RS,0, primary distinctions can be
determined by applying π.
What does it mean to „use the model“? It means, given
information on some parameters or variables (through
measurements, design choices, etc.), to determine resulting
restrictions on other parameters and variables. If, for

1 In the following, when considering an arbitrary variable, we
drop the index to improve readibility.

instance, measurements MEAS for some variables with the
granularity of the respective DOM0 are given, we can
compute the resulting restriction RS,0 ∩ MEAS. But only
the primary distinctions implied by this restriction matter,
i.e.

π(RS,0∩ MEAS) .

RS,0 may not be able to determine all required distinctions.
But w.r.t. the possible ones, DOM0(vS) may be overly
detailed. We would like to determine the distinctions to be
made for each vi that are both necessary and sufficient in
order to express the model in terms of these distinctions
only without losing the "distinguishing power" of
DOM0(vS). This means: finding a qualitative domain
abstraction for DOM0(vS)

τ=(τ1, τ2, ..., τn)
where τi: DOM0(vi) → DOMα(vi) =P(DOM0(vi))

which is maximal in some sense but does not destroy the
primary distinctions. For instance, if the pedal position is
given, then distinguishing values [0, poss,med] from those in
(poss,med , poss,max] is necessary and sufficient to derive the
primary distinctions for vswitch (zero vs. non.zero). In general
terms, the requirement means: if there is any external
restriction on the system behavior (actual observations,
design specification, etc.), applying the qualitative domain
abstraction τ before determining the primary distinctions
does not change the result, formally: if the external
restriction is given by a relation Rext⊂DOM0(vS), then

π’(τ(Rext) ∩ τ(RS,0)) = π(Rext ∩ RS,0) . (1)

Here, π’: τ(DOM0(vS)) → Π1 × Π2 × ... × Πn maps the
results of the qualitative domain abstraction τ (i.e. sets) to
the primary partitions they are contained in:

π’(τ(v))= π(v)) for v∈V .

Obviously, this is well-defined only if τ is a refinement of π
according to the following definition.

Definition (Refinement and Merge of Partitions and
Domain Abstractions)
Let Π1, Π2 in DOM0(v) be two partitions. Π1 is called a
refinement of another one, Π2, iff

∀ P1∈Π1 ∃ P2∈Π2 P1⊆ P2 .
It is called a strict refinement, if, additionally,

∃ P1∈Π1 ∀ P2∈Π2 P1≠P2.

The merge of two partitions Π1, Π2 of DOM0(v) is the
partition containing all intersections of their elements:

merge(Π1,Π2):= { P1 ∩ P2 P1∈Π1 ∧ P2∈Π2 }\{ ∅} .

We apply the same terminology to the qualitative domain
abstractions induced by the partitions.
Property (1) guarantees that we can first abstract both the
model and the measurements and still are able to detect the
same primary distinctions as before:

π’(τ(RS,0) ∩ τ(MEAS)) = π(RS,0 ∩ MEAS) .

Rext RS,0

Rext ∩ RS,0

π(Rext ∩ RS,0)

∩

π

τ(Rext) τ(RS,0)

τ(Rext) ∩ τ(RS,0)

π’ (τ(Rext) ∩ τ(RS,0))

∩

π’

=

τ

Figure 2: Relationship of primary and induced
qualitative domain abstractions

Figure 2 illustrates the situation. This analysis justifies the
following definition of our target:

Definition (Distinguishing Qualitative Domain
Abstraction)
Let RS,0 in DOM0(vS) be the original fine-grained model of a
system S and, for each variable vi, a finite set of primary
distinctions be given as a partition Πi={Pik} of DOM0(vi).
A qualitative domain abstraction

τ: DOM0(vS) → P(DOM0(vS))

is distinguishing w.r.t. {Πi} iff it is a refinement of π and

∀Rext ⊂ DOM0(v)
π’(τ(Rext) ∩ τ(RS,0)) = π(Rext ∩ RS,0) . (1)

A distinguishing domain abstraction τ is maximal, if there
is no distinguishing qualitative domain abstraction τ’ that
makes less distinctions w.r.t. one DOM0(vi), i.e. there is no
τi that is a strict refinement of any τ’ i .
An important and common specialization of distinctions
and of the task of finding maximal qualitative domain
abstractions is obtained if qualitative values are given as
intervals of ordered domains of variables. In this case, we
can represent qualitative values in a compact way by their
boundaries, the „landmarks“ as opposed to an extensional
representation of sets. For instance, the partition of
DOM(posswitch) can be represented by the landmark poss,med.

Definition (Landmark partition)
Let DOM0(v) be a totally ordered domain for a variable v.
For a landmark set

L={l k} ⊂ DOM0(v) with k<m ⇒ lk<lm ,

the induced partition

ΠL={ {l k} } ∪ {(l k, lk+1)}

is called a landmark partition.

In this case, we can hope for a compact representation of
partitions, and, if there are (piecewise) monotonic
functional dependencies among variables, also an easier
way of computing maximal distinguishing qualitative
domain abstractions.

Now that we have defined our goal, i.e. maximal
distinguishing domain abstractions, we will characterize the
desired solution in a formal way.

Characterizing Maximal Distinguishing
Abstractions

The intuition behind the formal characterization of the
desired qualitative domain abstractions is that property (1)
can be established if the qualitative domain abstraction τj of
each single DOM0(vj) reflects the primary distinctions πi of
any other DOM0(vi) (of course, including its own). This
means, we apply τ to one DOM0(vj) at a time only (leaving
the other variables at the granularity of DOM0) which
corresponds to the mapping

(id1, ..., idj-1, τj , idj+1, ..., idn) ,

where idk is the identical mapping on DOM0(vk). Then we
determine the primary distinctions by the mapping

π“ j = (π1, ... πj -1, π’ j , πj +1, ..., πn) ,
and (1) implies

∀ i,j pri(π“ j (τ“ j (Rext) ∩ τ“ j (RS,0))
= pri(π(Rext ∩ RS,0)), (2)

where pri is the projection to the i-th variable. On the other
hand, if (2) holds, then (1) can be proved. This motivates a
characterization of distinguishing qualitative domain
abstractions starting from the question: Which distinctions
in DOM0(vj) are necessary in order to guarantee the
determination of the primary distinctions in DOM0(vi)
under the assumption that all other variables can make
distinctions given by DOM0?
Given the primary distinctions for some DOM0(vi), we have
to determine which values in DOM0(vj) can be aggregated
into one qualitative value. The answer is that we can
aggregate two values vj,1, vj,2 in DOM0(vj) if they always
lead to the same conclusions for the primary distinctions of
DOM0(vi), regardless of any additional restriction on other
variables. This idea is captured by the following
equivalence relation on DOM0(vj).

Definition (Induced Partition)
Let an equivalence relation on DOM0(vj) be defined by

vj,1≈j vj,2 :⇔ ∀ i,k pr-j({v j = vj,1} ⊗ RS,0 ⊗ {v i = Pik})
= pr-j({ v j = vj,2} ⊗ RS,0 ⊗ {v i = Pik}) , (3)

where pr-j denotes the projection that eliminates the j-th
variable, and for two relations R1, R2, the join R1⊗R2 is the
intersection of the relations after their embedding into the
domain of all occurring variables.
The sets of partitions Πind,j for DOM0(vj) given by the
equivalence classes of the relations ≈j ,

Πind,j := DOM0(vj)≈j

are called the partitions induced by the primary
distinctions.

This means: two values are in different equivalence classes
if and only if they entail different conclusions for at least
one Pik (i.e. refuting it or not), possibly together with
additional information on other variables. This leads to the
following characterization.

Lemma (Characterization of Maximal Distinctive
Domain Aggregations)
The set of induced partitions { Πind,j } defines a maximal
distinguishing qualitative domain abstraction τind w.r.t. to
the primary distinctions.

Example (Pedal Position Sensor Switch)
Considering our introductory example and assuming

DOM0(vleft)=DOM0(vright)=DOM0(vswitch)=IR0

+

and

DOM0(posswitch) = [0,poss,max] ⊂ IR

for the variables of the switch, we can express the task
requirement of distinguishing at vswitch between 0 (= "gnd")
and positive values as an primary partition for vswitch: Πvswitch

= {{0},IR+}.
For all other variables (including the switch state), we do
not assume any primary distinction. When applying (3), we
have to consider Rswitch,0⊗{vswitch=0} and Rswitch,0⊗{vswitch∈IR+}
displayed in the tables below:

Rswitch,0 ⊗ {vswitch = 0}:

posswitch state vswitch vleft vright

[0, poss,med] left 0 0 IR0

+

(poss,med, poss,max] right 0 IR0

+ 0

Rswitch,0 ⊗ {vswitch ∈ IR+}:

posswitch state vswitch vleft vright

[0, poss.med] left IR+ IR+ IR0

+

(poss,med, poss,max] right IR+ IR0

+ IR+

To compute the induced partition for, say, vright, the
projections defined by (3) have to be compared for each
value of vright. As can be easily seen, all positive values for
vright occur in the same tuples both for vswitch = 0 and vswitch ∈
IR+ and hence, form one partition, whereas vright = 0 occurs
with state = right for vswitch = 0 in contrast to all positive
values. Hence, the lemma successfully induces the partition
Πvright = {{0}, IR+} as we would expect. Please note, that
this happened only because we looked at the switch in
isolation. If we consider the entire pedal position sensor
and, hence, the connection to the battery as in Figure 1, vright

would be constrained to "batt" and not receive the
landmark.
We point out, that (3) also induces a partition for the state,
Πstate = {{left},{right}}. This seems obvious. However, if
the switch would be seen as part of a different structure,
e.g. connected to the battery as displayed in Figure 3, then
we obtain Rswitch’,0 ⊗ {vswitch = 0} as

posswitch state vleft vright vswitch

[0, poss,max] {left,right} 0 0 0

and Rswitch’,0 ⊗ IR+ = ∅, and there is no reason to distinguish

the two states (and no values of other variables). This
illustrates that the induction of partitions can also be
applied to discrete variables and may detect that it is
useless to distinguish between certain states.

Switch

Batterygnd battVswitch

Figure 3: Switch with modified structure

Example (Multiplication Constraint)
As a second example, we consider the constraint c=a*b. Let
us assume first that

DOM0(a)= DOM0(b)= DOM0(c)= IR

and that there is an primary partition on DOM0(c) given by
the landmark set Lc={0, 1} for c and none for a and b. If we
try to construct a maximal abstraction τ according to (3),
we have to realize that, except for τ=id, there is no
abstraction that has the discriminating power of the real
numbers. In fact, if a qualitative abstraction τ would map
two different real numbers, a1<a2, onto one partition, then
choosing

Rext={a=a1}⊗ {b=1/a1}

reveals the loss: over the real numbers, the resulting
abstraction π yields

π(Rext ∩ RS,0) = (IR, IR , {1}) ,

whereas π’ produces

π’(τ(Rext) ∩ τ(RS,0)) = (IR, IR, [1, ∞)).

In other words, we cannot maintain the precision of IR
when we give up IR . However, if we change the
granularity of the domain (e.g. because we cannot measure
real numbers, anyway) and choose intervals bounded by
integers,

DOM0(a)= DOM0(b)= DOM0(c)={ (z, z+1) z∈INT },

then the picture changes. As suggested by Figure 4, we can
summarize all values greater than 1 for a. Intuitively
speaking, it would not pay off to distinguish between them
because b’s values are not fine-grained enough to exploit
the distinction, say, for determining whether or not c is less
than, equal to, or greater than 1. Applying (3) induces the
landmarks

La= Lb={-1, 0, 1}.

As a lesson to be learnt here, the choice of the initial
representation (the „gold standard“) can be crucial for the
result obtained.

What makes the characterization according to (3) not very
handy for the actual computation of the qualitative domain
abstraction, is
1. that checking (3) involves comparison of any pair of

values in the fine-grained representation of DOM0, and
2. that computation of {vj,1} ⊗ RS,0 ⊗ Pik can be costly for

complex devices.
Regarding 1, we cannot do much about it without losing
distinguishing power, except for the case of landmark
partitions and continuous functions. A weaker equivalence
relation would be

vj,1≈’ jvj,2 :⇔
∀ i,k vj,1 ∈prj(RS,0 ⊗ Pik) ⇔ vj,2 ∈prj(RS,0 ⊗ Pik). (3’)

The resulting qualitative domain abstraction joins the
values if and only if the same conclusions for the primary
distinctions can be derived from them alone, i.e. without
regarding additional information on other variables. (3) is
interesting because it does not require mutual comparison
of values, but computation of projections and their
intersection.
As for the second computational problem, we have several
observations: the computation of the RS,0 ⊗ Pik can be done
once for the checks on all DOM0(vj). More importantly, we
should consider how this computation can be achieved.
Unless the system is highly connected, the interaction
between vj and the distinctions in DOM0(vi) is not direct,
but mediated by a sequence of other variables. This leads to
the idea of exploiting the structure of the system and to
propagate distinctions through it to compute the possible
qualitative domain abstractions in different parts of the
system. In other words, while we usually compute
distinctions from the model by propagating given external
restrictions, we would like to start from the necessary
primary distinctions and propagate them "backward" in
order to determine the granularity that provides optimal
results when propagated "forward".

Foundations of the Propagation Algorithm

In this section, we provide the formal foundations for the
iterative computation of the Πind,j by propagation of
distinctions. There are two fundamental ideas that have to
be formalized and proved: For each variable vi,
1. we can compute the final partition Πind,j by computing

the partitions induced by the primary partitions Πi of the
other variables vi individually and merging them.

2. Rather than carrying out the checks involved in
definitions (3) or (3') globally, i.e. w.r.t. the entire
RS,0⊗Pik, the algorithm propagates the qualitative values
Pik to generate induced partitions in variables adjacent to
vj and then compute the equivalence classes of vj w.r.t.
these neighbor partitions only.

The first step is straightforward, since it means checking
the condition for the equivalence for a growing set of
indices (i,k) which can only lead to further splitting of
equivalence classes and never to joining them. Formally:

Lemma: (Iterative computation of induced partitions)
Let IK = {(i,k)} be the entire index set of the primary
partitions Πi = {Pik} and IK'' ⊂ IK' ⊆ IK. Then Πind,j(IK') is
a refinement of Πind,j(IK'') and more specifically,

Πind,j(IK') = merge Πind,j(IK''), Πind,j(IK' \ IK''))

Here, Πind,j(IK') is obtained by applying (3) or (3'),
respectively, quantifying over (i,k) ∈ IK'.

To formalize the second idea, we select two different
variables vi, vj and analyze how to compute the partitions of
vj induced by vi (Figure 5a). vi can only receive induced
partitions via constraints it is directly involved in. Hence,
we split the entire relation RS,0 for each variable vj into two
relations RS,0 = Rj,0 ⊗ R-j,0, where Rj,0 comprises all
constraints that involve vj directly (i.e. restrict it) and R-j,0
the other ones. In terms of component-oriented modeling
this means:
• For internal variables and parameters vj, the respective

Rj,0 is basically the component model relation (possibly
without constraints that do not mention vj)

• For the interface (terminal) variables shared by the
components, Rj,0 is constituted by the constraints in the
two connected components that refer to vj.

This replaces RS,0 ⊗ Pik by Rj,0 ⊗ R-j,0 ⊗ Pik in (3). In Figure
5b, the ellipse separates Rj,0 (in its interior) from R-j,0. Since
vj does not directly interact with R-j,0 , it reflects the
partitions Pik by reflecting the partitions induced by Pik on
the "neighbor variables" of vj, i.e. all variables occurring in
Rj,0 except for vj. This means the induced distinctions for vj

are obtained in two steps: First, for all neighbor variables
vm of vj, the partitions Pml induced on them by vi are
computed. Then the partitions on vj are computed within
the ellipse, i.e. by confining (3) to the neighborhood of vj,

a

b c = (-∞,0)

a

b c = 0

a

b c = (0,1)

a

b c = 1

a

b c = (1,∞)

Figure 4: Projections of a*b=c to the (a,b)-plain for the qualitative values of c

i.e. to Rj,0 ⊗ Pml (Figure 5c). The following lemma states
that this correctly determines the partitions for vj.

Lemma (Propagation of Partitions)
Let IK’ ⊂ IK, where for (i,k) ∈ IK’ , vi does not occur in Rj,0

, i.e. is not a neighboring variable of vj. Let further ML be
an index set, such that for all (m,l) ∈ ML, vm is a neighbor
variable of vj and ML is given by the partitions induced by
Pik:

{Pml | (m,l) ∈ ML} = Πind,m(R-j,0 , IK’).

Then

Πind,j(RS,0 , IK’) = Πind,j(Rj,0 , ML).

Here Πind,j(Rx, ⋅) means that (3) are carried out for Rx

replacing RS,0.

This provides the foundation for an algorithm (or, rather, a
family of algorithms) that computes induced qualitative
values from the primary distinctions by propagation
through the structure of the model, as illustrated by Figure
5 a, b, c. It can be sketched as follows (Figure 6):

Algorithm ComputeInducedPartitions(variable list)
1. For all variables vi :

current partition(vi) ← primary partition(vi)
2. ComputeNeighborPartitions(variable list)
3. For all variables vi :

first partition(vi) ← current partition(vi)
current partition(vi) ← primary partition(vi)

4. ComputeNeighborPartitions (reverse(variable list))
5. For all variables vi :

final partition(vi) ← merge(first partition(vi), current
partition(vi))

Figure 6: Algorithm for the computation of induced
partitions

The procedure ComputeNeighborPartitions gets the first
variable on the variable list and its current partition,
computes the induced partitions for all neighboring
variables in the rest of the list, then merges them with the
current partitions and recursively calls itself on the rest of
the variable list.

After the first call of the procedure, every variable in the
variable list has received induced partitions from all
predecessors in the list, and in the second run from all
successors.
For our example of the pedal position sensor, the
propagation algorithm would induce the landmark poss,med

for the switch which maps to posped,med for the pedal and
pospot,med for the potentiometer, finally generating a
landmark vpot,med corresponding to this position, as needed
for the task described.

Application: Models for Diagnosis and
Significant Deviations

In many cases, for instance in diagnosis and FMEA, what
makes a distinction in a model of a component is not
determined by some absolute values of other variables, but
by the fact whether or not it enforces a significant
deviation on them, regardless of what their specific value
is. The view is here that the function of the overall device
imposes a certain tolerance on the output of this device, and
its components are not considered faulty unless their
behavior causes a disturbance of the output beyond the
given tolerance. If we succeed to compute the tolerances of
the parameters of the component models starting from the
given functional specification, we can automatically
generate fault models that reflect the particular device and
its context, which we cannot expect by definition from
generic models.

x

y DOM(v)

xref xact∆x

yref

yact

∆y
R

Figure 7: A relational model can impose constraints on
the deviations of variables

vj

vi

Πi

Πj

vj

vi

Πi

vj

vi

Πj

Figure 5 a, b, c: Localizing the computation of partitions

The idea underlying deviation models is to describe
deviations of variables which are consistent with a certain
behavior model (Figure 7). For this purpose, we define

∆ : DOM0(v) × DOM0(v) → DOM0(v)

∆((x1, x2, ..., xn), (y1, y2, ..., yn)) :=
(∆1(x1,y1), ∆2(x2,y2), .., ∆k(xn,yn))= (x1-y1, x2-y2, .., xn-yn)

The deviation model of R, denoted R∆, describes how
deviations of variables propagate through a component:

R∆ ⊆ DOM0(v) × DOM0(v) × DOM0(v)

R∆ := {(v, v’, ∆(v, v’) v, v’ ∈R }

The projection of R∆ on the ∆vi , pr∆vi(R∆), can be viewed as
a "pure" deviation model which relates deviations of
variables independent of their actual and reference value.
This is meaningful only in some cases, for example, if the
relation describes a monotonic function. In general, at least
information about the actual value will be necessary. The
analysis of significant distinctions developed above can be
applied to such deviation models: we can specify what is
considered to be a significant deviation of some relevant
variables by landmarks of the respective ∆-variable. They
will induce partitions for other respective ∆-variables, but
can also propagate to the domains of the variables
themselves.
The induced landmarks in the model can be used to
properly model the (context-dependent) limits of correct
behavior and to define fault models. They also indicate
some requirements on the precision of observations for
diagnostic purposes.
Basically, the technique determines the model granularity
(and observation granularity) given particular functional
distinctions. The result will mainly serve fault detection.
Fault localization and identification might be possible, but
is not guaranteed.
For the latter, the goal is to determine model and
observation granularity given particular behavior mode
distinctions.
The question is here: Given a set of behavior modes for
each component (one correct mode and several faulty
ones), what distinctions have to be made in the models (and
the observations) to help discriminate the modes?
One way to address this problem is to represent the
component models as follows: For component c, a mode
variable mc is introduced whose values represent the
various, mutually exclusive behavior modes mc,i of the
component. Each mode has an associated model relation,
Rc,i. This establishes the component model as

∧i (modec = mc,i ⇒model(Rc,i)),

or, in relational form,

Rc = ∪i {mc,i} × Rc,i.

The system model relation is then the join of all these
component models. For this, we can now formulate the task
in our formalism: for each component, we define the
primary partition of its mode variable to be the total
partition:

Πmodec,i = {{mc,i}},

and compute the induced qualitative values. Basically, this
means treating the behavior mode like a state variable
whose values have to be completely distinguished form
each other.

Summary and Discussion

The work presented here is an attempt to make progress in
understanding and solving the crucial question in
qualitative reasoning: How to generate models that make
the essential distinctions only?
Pursuing the goal of automated generation of such models
aims at coping with the tension between the genericity and
compositionality of models and their specificity and power
for a particular context and task. We feel that ignoring this
problem could lead to a failure or, at least, limitations in the
application of model-based systems, because re-usability of
model fragments and model libraries would be low.
What have we achieved by now? There are two outcomes
that both should be appreciated: on the one hand we started
to provide a formal, theoretical foundation for formulating
and analyzing the goal, the problems and solutions in a
rigorous way. This is important, because we have to be
aware that a huge part of the problem space is not tractable
in theoretical and/or practical sense. We better analyze and
characterize what we can expect to solve in practice. After
all, this work connects to the analysis in (Struss 88), (Struss
90) where we showed that trying to make all significant
distinctions in qualitative models can lead to infinite
domains (like the rational numbers). Here, we do attempt to
create models that make all significant distinctions, and one
goal of future work is to identify conditions under which
this can work. We believe that the chosen representation,
relational models, is general enough as a basis.
The second result is the design of an algorithm (or, rather, a
family of algorithms) that actually computes the significant
distinctions making use of the particular system structure.
Of course, its applicability and feasibility is threatened by
the same problems as its theoretical foundation. There are
different dimensions of these problems and potential
solutions:
• The computation of the equivalence classes according

to (3) and (3’) may simply lead to infinite distinctions or
be practically impossible. As we illustrated with an
example, the granularity of the base model plays an
important role here. If a type of constraint is known to
provide no qualitative values if only one variable
requires distinctions, the respective method could just
skip the computation or replace it by a weaker one
which, for instance, combines landmarks of several
variables to generate others.

• Intuitively, the special case where the relations
represent functional relationships among variables
seems more restricted. However, there are several
caveats: dependent on the granularity for the domain
DOM0, the abstraction of a real-valued function may no
longer be a function, and a landmark does not
necessarily induce a single value elsewhere. On the

other hand, multi-variate real-valued functions may fail
to induce a finite set of landmarks, as the multiplication
example showed. What will work smoothly are simple
(piecewise) monotonic functions where landmarks map
to landmarks and intervals to intervals.

• Right now, the algorithm propagates primary
distinctions everywhere. There is simply no criterion
where they might ultimately be needed. We were not
very specific about where primary distinctions come
from and what they mean. Also, the definition of
distinguishing domain abstractions, criterion (3), and
the algorithm contain or exploit no restriction on the
nature or structure of the external restrictions, Rext.
When actually solving a particular task, Rext will not be
arbitrary (e.g. representing measurements of a certain
subset of the variables), and only particular
computational paths in the model might actually be
relevant. If it is possible to anticipate them, there might
be a way to control the "backward" propagation of
distinctions appropriately. For instance, if the model is
used for prediction, say support for FMEA, then the
primary distinctions for variables that are functionally
relevant have to be reflected by induced qualitative
values of internal variables, but not vice versa, since the
prediction always progresses from presumed faults to
the output variables.

Future work will have to both push the analysis of
conditions that prevent or guarantee the generation of a
finite set of qualitative values and the development of
appropriate specializations of the algorithm and the
exploitation of general or task-dependent control heuristics.
Other extensions to the theory and its application concern
temporal aspects. We consider our theory to provide a basis
for a proper treatment of time scale abstraction (Iwasaki
92) and, in particular, hybrid modeling. The reason is that
whether or not certain changes can be either ignored or
treated as discontinuous changes reflects what the current
task requires in terms of significant distinctions in
magnitude of variables, their derivatives and durations. To
handle this as an instance of our framework, time has to
included as a variable and integration rules must become
part of the model relations.
Finally, there exists a more abstract and weaker version of
our target: rather than computing qualitative values as sets
of values of DOM0, we might want to introduce distinctions
only as (partially) ordered landmarks and then propagate
ordering information through the model. While this
eliminates some of the computational problems, the result
may simply be too weak and ambiguous.
In summary, we are convinced that more research should
be dedicated to this important practical problem since it is
essential for bringing compositional qualitative modeling to
real applications.

Acknowledgments
Many thanks to the members of the MQM group at the
Technical University of Munich for discussions and
collaboration. The reviewers’ comments were very helpful
in our attempt to improve the final version, although we
certainly did not satisfy all their requests. This work was
supported in part by the Commission of the European
Union (#BE 95/2128) and by the German Ministry of
Education and Research (#01 IN 509 41).

References

Iwasaki, Y. 1992. Reasoning with Multiple Abstraction
Models. In Faltings, B. and Struss, P. eds. 1992. Recent
Advances in Qualitative Physics. Cambridge, Mass.: MIT
Press.

Struss, P. 1988. Mathematical Aspects of Qualitative
Reasoning. International Journal of Artificial Intelligence
in Engineering Vol. 3 Nr. 3, Computational Mechanics
Publications, pp. 172-173.

Struss, P. 1990. Problems of Interval-Based Qualitative
Reasoning. In Weld, D. and de Kleer, J. eds. 1990.
Qualitative reasoning about physical systems. Morgan
Kaufmann Publishers, pp. 288-305.

Struss, P. 1992. What's in SD? Towards a Theory of
Modeling for Diagnosis, In Hamscher, W., Console, L., and
de Kleer, J. eds. 1992. Readings in Model-based Diagnosis.
Morgan Kaufmann Publishers, pp. 419-449.

