Übungen zur Vorlesung
Praktikum KI-Basierte Robotersteuerung

Prolog

For the rest of the course we will work with ROS. ROS is a meta operating system providing a middleware and a set of libraries for the development of mobile robots. The easiest way to install it on a laptop is to follow the install instructions for your platform on the ROS homepage at http://www.ros.org/wiki/ROS/Installation. Please install the variant *ros-electric-desktop-full*. After installing ROS, please also install a few additional packages:

```
sudo apt-get install ros-electric-ros-tutorials ros-electric-cram-pl
sudo apt-get install ros-electric-roslisp-common ros-electric-roslisp-support
```

After installing the Ubuntu packages, you need to set up a so-called “overlay”. First, you need `python-setuptools` to install `rosinstall`:

```
sudo apt-get install python-setuptools
sudo easy_install rosinstall
```

Now create the overlay:

```
mkdir -p ~/ros/workspace
rosinstall ~/ros /opt/ros/electric ~/ros/workspace
```

The file `~/ros/setup.bash` needs to be loaded at every login. Execute (once):

```
echo "source ~/ros/setup.bash" >> ~/.bashrc
```

All ROS packages created in the tutorials should be created in the directory `~/ros/workspace` no matter what the respective tutorial says to keep the ROS set up clean and prevent problems.

1. First steps in ROS

 Go through the following tutorials:
 (c) http://www.ros.org/wiki/ROS/Tutorials/BuildingPackages

2. Introduction to CRAM

 Go through the following tutorials:
 (a) http://www.ros.org/wiki/cram_pl/Tutorials/SetupAndFirstSteps
 (c) http://www.ros.org/wiki/cram_pl/Tutorials/ControllingTurtlesimFromLisp